mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
716bdeb68b
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.4.10 → v0.5.0](https://github.com/astral-sh/ruff-pre-commit/compare/v0.4.10...v0.5.0) - [github.com/pre-commit/mirrors-mypy: v1.10.0 → v1.10.1](https://github.com/pre-commit/mirrors-mypy/compare/v1.10.0...v1.10.1) * Fix ruff issues * Fix ruff issues --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
177 lines
6.0 KiB
Python
177 lines
6.0 KiB
Python
"""
|
|
Fast Polynomial Multiplication using radix-2 fast Fourier Transform.
|
|
"""
|
|
|
|
import mpmath # for roots of unity
|
|
import numpy as np
|
|
|
|
|
|
class FFT:
|
|
"""
|
|
Fast Polynomial Multiplication using radix-2 fast Fourier Transform.
|
|
|
|
Reference:
|
|
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#The_radix-2_DIT_case
|
|
|
|
For polynomials of degree m and n the algorithms has complexity
|
|
O(n*logn + m*logm)
|
|
|
|
The main part of the algorithm is split in two parts:
|
|
1) __DFT: We compute the discrete fourier transform (DFT) of A and B using a
|
|
bottom-up dynamic approach -
|
|
2) __multiply: Once we obtain the DFT of A*B, we can similarly
|
|
invert it to obtain A*B
|
|
|
|
The class FFT takes two polynomials A and B with complex coefficients as arguments;
|
|
The two polynomials should be represented as a sequence of coefficients starting
|
|
from the free term. Thus, for instance x + 2*x^3 could be represented as
|
|
[0,1,0,2] or (0,1,0,2). The constructor adds some zeros at the end so that the
|
|
polynomials have the same length which is a power of 2 at least the length of
|
|
their product.
|
|
|
|
Example:
|
|
|
|
Create two polynomials as sequences
|
|
>>> A = [0, 1, 0, 2] # x+2x^3
|
|
>>> B = (2, 3, 4, 0) # 2+3x+4x^2
|
|
|
|
Create an FFT object with them
|
|
>>> x = FFT(A, B)
|
|
|
|
Print product
|
|
>>> x.product # 2x + 3x^2 + 8x^3 + 4x^4 + 6x^5
|
|
[(-0+0j), (2+0j), (3+0j), (8+0j), (6+0j), (8+0j)]
|
|
|
|
__str__ test
|
|
>>> print(x)
|
|
A = 0*x^0 + 1*x^1 + 2*x^0 + 3*x^2
|
|
B = 0*x^2 + 1*x^3 + 2*x^4
|
|
A*B = 0*x^(-0+0j) + 1*x^(2+0j) + 2*x^(3+0j) + 3*x^(8+0j) + 4*x^(6+0j) + 5*x^(8+0j)
|
|
"""
|
|
|
|
def __init__(self, poly_a=None, poly_b=None):
|
|
# Input as list
|
|
self.polyA = list(poly_a or [0])[:]
|
|
self.polyB = list(poly_b or [0])[:]
|
|
|
|
# Remove leading zero coefficients
|
|
while self.polyA[-1] == 0:
|
|
self.polyA.pop()
|
|
self.len_A = len(self.polyA)
|
|
|
|
while self.polyB[-1] == 0:
|
|
self.polyB.pop()
|
|
self.len_B = len(self.polyB)
|
|
|
|
# Add 0 to make lengths equal a power of 2
|
|
self.c_max_length = int(
|
|
2 ** np.ceil(np.log2(len(self.polyA) + len(self.polyB) - 1))
|
|
)
|
|
|
|
while len(self.polyA) < self.c_max_length:
|
|
self.polyA.append(0)
|
|
while len(self.polyB) < self.c_max_length:
|
|
self.polyB.append(0)
|
|
# A complex root used for the fourier transform
|
|
self.root = complex(mpmath.root(x=1, n=self.c_max_length, k=1))
|
|
|
|
# The product
|
|
self.product = self.__multiply()
|
|
|
|
# Discrete fourier transform of A and B
|
|
def __dft(self, which):
|
|
dft = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB]
|
|
# Corner case
|
|
if len(dft) <= 1:
|
|
return dft[0]
|
|
next_ncol = self.c_max_length // 2
|
|
while next_ncol > 0:
|
|
new_dft = [[] for i in range(next_ncol)]
|
|
root = self.root**next_ncol
|
|
|
|
# First half of next step
|
|
current_root = 1
|
|
for j in range(self.c_max_length // (next_ncol * 2)):
|
|
for i in range(next_ncol):
|
|
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
|
|
current_root *= root
|
|
# Second half of next step
|
|
current_root = 1
|
|
for j in range(self.c_max_length // (next_ncol * 2)):
|
|
for i in range(next_ncol):
|
|
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
|
|
current_root *= root
|
|
# Update
|
|
dft = new_dft
|
|
next_ncol = next_ncol // 2
|
|
return dft[0]
|
|
|
|
# multiply the DFTs of A and B and find A*B
|
|
def __multiply(self):
|
|
dft_a = self.__dft("A")
|
|
dft_b = self.__dft("B")
|
|
inverce_c = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]]
|
|
del dft_a
|
|
del dft_b
|
|
|
|
# Corner Case
|
|
if len(inverce_c[0]) <= 1:
|
|
return inverce_c[0]
|
|
# Inverse DFT
|
|
next_ncol = 2
|
|
while next_ncol <= self.c_max_length:
|
|
new_inverse_c = [[] for i in range(next_ncol)]
|
|
root = self.root ** (next_ncol // 2)
|
|
current_root = 1
|
|
# First half of next step
|
|
for j in range(self.c_max_length // next_ncol):
|
|
for i in range(next_ncol // 2):
|
|
# Even positions
|
|
new_inverse_c[i].append(
|
|
(
|
|
inverce_c[i][j]
|
|
+ inverce_c[i][j + self.c_max_length // next_ncol]
|
|
)
|
|
/ 2
|
|
)
|
|
# Odd positions
|
|
new_inverse_c[i + next_ncol // 2].append(
|
|
(
|
|
inverce_c[i][j]
|
|
- inverce_c[i][j + self.c_max_length // next_ncol]
|
|
)
|
|
/ (2 * current_root)
|
|
)
|
|
current_root *= root
|
|
# Update
|
|
inverce_c = new_inverse_c
|
|
next_ncol *= 2
|
|
# Unpack
|
|
inverce_c = [round(x[0].real, 8) + round(x[0].imag, 8) * 1j for x in inverce_c]
|
|
|
|
# Remove leading 0's
|
|
while inverce_c[-1] == 0:
|
|
inverce_c.pop()
|
|
return inverce_c
|
|
|
|
# Overwrite __str__ for print(); Shows A, B and A*B
|
|
def __str__(self):
|
|
a = "A = " + " + ".join(
|
|
f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A])
|
|
)
|
|
b = "B = " + " + ".join(
|
|
f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B])
|
|
)
|
|
c = "A*B = " + " + ".join(
|
|
f"{coef}*x^{i}" for coef, i in enumerate(self.product)
|
|
)
|
|
|
|
return f"{a}\n{b}\n{c}"
|
|
|
|
|
|
# Unit tests
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|