mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-23 18:53:43 +00:00
345 lines
12 KiB
Python
345 lines
12 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Functions for downloading and reading MNIST data (deprecated).
|
|
|
|
This module and all its submodules are deprecated.
|
|
"""
|
|
|
|
import gzip
|
|
import os
|
|
import typing
|
|
import urllib
|
|
|
|
import numpy as np
|
|
from tensorflow.python.framework import dtypes, random_seed
|
|
from tensorflow.python.platform import gfile
|
|
from tensorflow.python.util.deprecation import deprecated
|
|
|
|
|
|
class _Datasets(typing.NamedTuple):
|
|
train: "_DataSet"
|
|
validation: "_DataSet"
|
|
test: "_DataSet"
|
|
|
|
|
|
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
|
|
DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
|
|
|
|
|
|
def _read32(bytestream):
|
|
dt = np.dtype(np.uint32).newbyteorder(">")
|
|
return np.frombuffer(bytestream.read(4), dtype=dt)[0]
|
|
|
|
|
|
@deprecated(None, "Please use tf.data to implement this functionality.")
|
|
def _extract_images(f):
|
|
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].
|
|
|
|
Args:
|
|
f: A file object that can be passed into a gzip reader.
|
|
|
|
Returns:
|
|
data: A 4D uint8 numpy array [index, y, x, depth].
|
|
|
|
Raises:
|
|
ValueError: If the bytestream does not start with 2051.
|
|
|
|
"""
|
|
print("Extracting", f.name)
|
|
with gzip.GzipFile(fileobj=f) as bytestream:
|
|
magic = _read32(bytestream)
|
|
if magic != 2051:
|
|
raise ValueError(
|
|
"Invalid magic number %d in MNIST image file: %s" % (magic, f.name)
|
|
)
|
|
num_images = _read32(bytestream)
|
|
rows = _read32(bytestream)
|
|
cols = _read32(bytestream)
|
|
buf = bytestream.read(rows * cols * num_images)
|
|
data = np.frombuffer(buf, dtype=np.uint8)
|
|
data = data.reshape(num_images, rows, cols, 1)
|
|
return data
|
|
|
|
|
|
@deprecated(None, "Please use tf.one_hot on tensors.")
|
|
def _dense_to_one_hot(labels_dense, num_classes):
|
|
"""Convert class labels from scalars to one-hot vectors."""
|
|
num_labels = labels_dense.shape[0]
|
|
index_offset = np.arange(num_labels) * num_classes
|
|
labels_one_hot = np.zeros((num_labels, num_classes))
|
|
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
|
|
return labels_one_hot
|
|
|
|
|
|
@deprecated(None, "Please use tf.data to implement this functionality.")
|
|
def _extract_labels(f, one_hot=False, num_classes=10):
|
|
"""Extract the labels into a 1D uint8 numpy array [index].
|
|
|
|
Args:
|
|
f: A file object that can be passed into a gzip reader.
|
|
one_hot: Does one hot encoding for the result.
|
|
num_classes: Number of classes for the one hot encoding.
|
|
|
|
Returns:
|
|
labels: a 1D uint8 numpy array.
|
|
|
|
Raises:
|
|
ValueError: If the bystream doesn't start with 2049.
|
|
"""
|
|
print("Extracting", f.name)
|
|
with gzip.GzipFile(fileobj=f) as bytestream:
|
|
magic = _read32(bytestream)
|
|
if magic != 2049:
|
|
raise ValueError(
|
|
"Invalid magic number %d in MNIST label file: %s" % (magic, f.name)
|
|
)
|
|
num_items = _read32(bytestream)
|
|
buf = bytestream.read(num_items)
|
|
labels = np.frombuffer(buf, dtype=np.uint8)
|
|
if one_hot:
|
|
return _dense_to_one_hot(labels, num_classes)
|
|
return labels
|
|
|
|
|
|
class _DataSet:
|
|
"""Container class for a _DataSet (deprecated).
|
|
|
|
THIS CLASS IS DEPRECATED.
|
|
"""
|
|
|
|
@deprecated(
|
|
None,
|
|
"Please use alternatives such as official/mnist/_DataSet.py"
|
|
" from tensorflow/models.",
|
|
)
|
|
def __init__(
|
|
self,
|
|
images,
|
|
labels,
|
|
fake_data=False,
|
|
one_hot=False,
|
|
dtype=dtypes.float32,
|
|
reshape=True,
|
|
seed=None,
|
|
):
|
|
"""Construct a _DataSet.
|
|
|
|
one_hot arg is used only if fake_data is true. `dtype` can be either
|
|
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
|
|
`[0, 1]`. Seed arg provides for convenient deterministic testing.
|
|
|
|
Args:
|
|
images: The images
|
|
labels: The labels
|
|
fake_data: Ignore inages and labels, use fake data.
|
|
one_hot: Bool, return the labels as one hot vectors (if True) or ints (if
|
|
False).
|
|
dtype: Output image dtype. One of [uint8, float32]. `uint8` output has
|
|
range [0,255]. float32 output has range [0,1].
|
|
reshape: Bool. If True returned images are returned flattened to vectors.
|
|
seed: The random seed to use.
|
|
"""
|
|
seed1, seed2 = random_seed.get_seed(seed)
|
|
# If op level seed is not set, use whatever graph level seed is returned
|
|
self._rng = np.random.default_rng(seed1 if seed is None else seed2)
|
|
dtype = dtypes.as_dtype(dtype).base_dtype
|
|
if dtype not in (dtypes.uint8, dtypes.float32):
|
|
msg = f"Invalid image dtype {dtype!r}, expected uint8 or float32"
|
|
raise TypeError(msg)
|
|
if fake_data:
|
|
self._num_examples = 10000
|
|
self.one_hot = one_hot
|
|
else:
|
|
assert (
|
|
images.shape[0] == labels.shape[0]
|
|
), f"images.shape: {images.shape} labels.shape: {labels.shape}"
|
|
self._num_examples = images.shape[0]
|
|
|
|
# Convert shape from [num examples, rows, columns, depth]
|
|
# to [num examples, rows*columns] (assuming depth == 1)
|
|
if reshape:
|
|
assert images.shape[3] == 1
|
|
images = images.reshape(
|
|
images.shape[0], images.shape[1] * images.shape[2]
|
|
)
|
|
if dtype == dtypes.float32:
|
|
# Convert from [0, 255] -> [0.0, 1.0].
|
|
images = images.astype(np.float32)
|
|
images = np.multiply(images, 1.0 / 255.0)
|
|
self._images = images
|
|
self._labels = labels
|
|
self._epochs_completed = 0
|
|
self._index_in_epoch = 0
|
|
|
|
@property
|
|
def images(self):
|
|
return self._images
|
|
|
|
@property
|
|
def labels(self):
|
|
return self._labels
|
|
|
|
@property
|
|
def num_examples(self):
|
|
return self._num_examples
|
|
|
|
@property
|
|
def epochs_completed(self):
|
|
return self._epochs_completed
|
|
|
|
def next_batch(self, batch_size, fake_data=False, shuffle=True):
|
|
"""Return the next `batch_size` examples from this data set."""
|
|
if fake_data:
|
|
fake_image = [1] * 784
|
|
fake_label = [1] + [0] * 9 if self.one_hot else 0
|
|
return (
|
|
[fake_image for _ in range(batch_size)],
|
|
[fake_label for _ in range(batch_size)],
|
|
)
|
|
start = self._index_in_epoch
|
|
# Shuffle for the first epoch
|
|
if self._epochs_completed == 0 and start == 0 and shuffle:
|
|
perm0 = np.arange(self._num_examples)
|
|
self._rng.shuffle(perm0)
|
|
self._images = self.images[perm0]
|
|
self._labels = self.labels[perm0]
|
|
# Go to the next epoch
|
|
if start + batch_size > self._num_examples:
|
|
# Finished epoch
|
|
self._epochs_completed += 1
|
|
# Get the rest examples in this epoch
|
|
rest_num_examples = self._num_examples - start
|
|
images_rest_part = self._images[start : self._num_examples]
|
|
labels_rest_part = self._labels[start : self._num_examples]
|
|
# Shuffle the data
|
|
if shuffle:
|
|
perm = np.arange(self._num_examples)
|
|
self._rng.shuffle(perm)
|
|
self._images = self.images[perm]
|
|
self._labels = self.labels[perm]
|
|
# Start next epoch
|
|
start = 0
|
|
self._index_in_epoch = batch_size - rest_num_examples
|
|
end = self._index_in_epoch
|
|
images_new_part = self._images[start:end]
|
|
labels_new_part = self._labels[start:end]
|
|
return (
|
|
np.concatenate((images_rest_part, images_new_part), axis=0),
|
|
np.concatenate((labels_rest_part, labels_new_part), axis=0),
|
|
)
|
|
else:
|
|
self._index_in_epoch += batch_size
|
|
end = self._index_in_epoch
|
|
return self._images[start:end], self._labels[start:end]
|
|
|
|
|
|
@deprecated(None, "Please write your own downloading logic.")
|
|
def _maybe_download(filename, work_directory, source_url):
|
|
"""Download the data from source url, unless it's already here.
|
|
|
|
Args:
|
|
filename: string, name of the file in the directory.
|
|
work_directory: string, path to working directory.
|
|
source_url: url to download from if file doesn't exist.
|
|
|
|
Returns:
|
|
Path to resulting file.
|
|
"""
|
|
if not gfile.Exists(work_directory):
|
|
gfile.MakeDirs(work_directory)
|
|
filepath = os.path.join(work_directory, filename)
|
|
if not gfile.Exists(filepath):
|
|
urllib.request.urlretrieve(source_url, filepath) # noqa: S310
|
|
with gfile.GFile(filepath) as f:
|
|
size = f.size()
|
|
print("Successfully downloaded", filename, size, "bytes.")
|
|
return filepath
|
|
|
|
|
|
@deprecated(None, "Please use alternatives such as: tensorflow_datasets.load('mnist')")
|
|
def read_data_sets(
|
|
train_dir,
|
|
fake_data=False,
|
|
one_hot=False,
|
|
dtype=dtypes.float32,
|
|
reshape=True,
|
|
validation_size=5000,
|
|
seed=None,
|
|
source_url=DEFAULT_SOURCE_URL,
|
|
):
|
|
if fake_data:
|
|
|
|
def fake():
|
|
return _DataSet(
|
|
[], [], fake_data=True, one_hot=one_hot, dtype=dtype, seed=seed
|
|
)
|
|
|
|
train = fake()
|
|
validation = fake()
|
|
test = fake()
|
|
return _Datasets(train=train, validation=validation, test=test)
|
|
|
|
if not source_url: # empty string check
|
|
source_url = DEFAULT_SOURCE_URL
|
|
|
|
train_images_file = "train-images-idx3-ubyte.gz"
|
|
train_labels_file = "train-labels-idx1-ubyte.gz"
|
|
test_images_file = "t10k-images-idx3-ubyte.gz"
|
|
test_labels_file = "t10k-labels-idx1-ubyte.gz"
|
|
|
|
local_file = _maybe_download(
|
|
train_images_file, train_dir, source_url + train_images_file
|
|
)
|
|
with gfile.Open(local_file, "rb") as f:
|
|
train_images = _extract_images(f)
|
|
|
|
local_file = _maybe_download(
|
|
train_labels_file, train_dir, source_url + train_labels_file
|
|
)
|
|
with gfile.Open(local_file, "rb") as f:
|
|
train_labels = _extract_labels(f, one_hot=one_hot)
|
|
|
|
local_file = _maybe_download(
|
|
test_images_file, train_dir, source_url + test_images_file
|
|
)
|
|
with gfile.Open(local_file, "rb") as f:
|
|
test_images = _extract_images(f)
|
|
|
|
local_file = _maybe_download(
|
|
test_labels_file, train_dir, source_url + test_labels_file
|
|
)
|
|
with gfile.Open(local_file, "rb") as f:
|
|
test_labels = _extract_labels(f, one_hot=one_hot)
|
|
|
|
if not 0 <= validation_size <= len(train_images):
|
|
msg = (
|
|
"Validation size should be between 0 and "
|
|
f"{len(train_images)}. Received: {validation_size}."
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
validation_images = train_images[:validation_size]
|
|
validation_labels = train_labels[:validation_size]
|
|
train_images = train_images[validation_size:]
|
|
train_labels = train_labels[validation_size:]
|
|
|
|
options = {"dtype": dtype, "reshape": reshape, "seed": seed}
|
|
|
|
train = _DataSet(train_images, train_labels, **options)
|
|
validation = _DataSet(validation_images, validation_labels, **options)
|
|
test = _DataSet(test_images, test_labels, **options)
|
|
|
|
return _Datasets(train=train, validation=validation, test=test)
|