mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-23 18:53:43 +00:00
efb7463cde
Co-authored-by: Christian Clauss <cclauss@me.com>
133 lines
2.9 KiB
Python
133 lines
2.9 KiB
Python
"""
|
|
This is pure Python implementation of fibonacci search.
|
|
|
|
Resources used:
|
|
https://en.wikipedia.org/wiki/Fibonacci_search_technique
|
|
|
|
For doctests run following command:
|
|
python3 -m doctest -v fibonacci_search.py
|
|
|
|
For manual testing run:
|
|
python3 fibonacci_search.py
|
|
"""
|
|
|
|
from functools import lru_cache
|
|
|
|
|
|
@lru_cache
|
|
def fibonacci(k: int) -> int:
|
|
"""Finds fibonacci number in index k.
|
|
|
|
Parameters
|
|
----------
|
|
k :
|
|
Index of fibonacci.
|
|
|
|
Returns
|
|
-------
|
|
int
|
|
Fibonacci number in position k.
|
|
|
|
>>> fibonacci(0)
|
|
0
|
|
>>> fibonacci(2)
|
|
1
|
|
>>> fibonacci(5)
|
|
5
|
|
>>> fibonacci(15)
|
|
610
|
|
>>> fibonacci('a')
|
|
Traceback (most recent call last):
|
|
TypeError: k must be an integer.
|
|
>>> fibonacci(-5)
|
|
Traceback (most recent call last):
|
|
ValueError: k integer must be greater or equal to zero.
|
|
"""
|
|
if not isinstance(k, int):
|
|
raise TypeError("k must be an integer.")
|
|
if k < 0:
|
|
raise ValueError("k integer must be greater or equal to zero.")
|
|
if k == 0:
|
|
return 0
|
|
elif k == 1:
|
|
return 1
|
|
else:
|
|
return fibonacci(k - 1) + fibonacci(k - 2)
|
|
|
|
|
|
def fibonacci_search(arr: list, val: int) -> int:
|
|
"""A pure Python implementation of a fibonacci search algorithm.
|
|
|
|
Parameters
|
|
----------
|
|
arr
|
|
List of sorted elements.
|
|
val
|
|
Element to search in list.
|
|
|
|
Returns
|
|
-------
|
|
int
|
|
The index of the element in the array.
|
|
-1 if the element is not found.
|
|
|
|
>>> fibonacci_search([4, 5, 6, 7], 4)
|
|
0
|
|
>>> fibonacci_search([4, 5, 6, 7], -10)
|
|
-1
|
|
>>> fibonacci_search([-18, 2], -18)
|
|
0
|
|
>>> fibonacci_search([5], 5)
|
|
0
|
|
>>> fibonacci_search(['a', 'c', 'd'], 'c')
|
|
1
|
|
>>> fibonacci_search(['a', 'c', 'd'], 'f')
|
|
-1
|
|
>>> fibonacci_search([], 1)
|
|
-1
|
|
>>> fibonacci_search([.1, .4 , 7], .4)
|
|
1
|
|
>>> fibonacci_search([], 9)
|
|
-1
|
|
>>> fibonacci_search(list(range(100)), 63)
|
|
63
|
|
>>> fibonacci_search(list(range(100)), 99)
|
|
99
|
|
>>> fibonacci_search(list(range(-100, 100, 3)), -97)
|
|
1
|
|
>>> fibonacci_search(list(range(-100, 100, 3)), 0)
|
|
-1
|
|
>>> fibonacci_search(list(range(-100, 100, 5)), 0)
|
|
20
|
|
>>> fibonacci_search(list(range(-100, 100, 5)), 95)
|
|
39
|
|
"""
|
|
len_list = len(arr)
|
|
# Find m such that F_m >= n where F_i is the i_th fibonacci number.
|
|
i = 0
|
|
while True:
|
|
if fibonacci(i) >= len_list:
|
|
fibb_k = i
|
|
break
|
|
i += 1
|
|
offset = 0
|
|
while fibb_k > 0:
|
|
index_k = min(
|
|
offset + fibonacci(fibb_k - 1), len_list - 1
|
|
) # Prevent out of range
|
|
item_k_1 = arr[index_k]
|
|
if item_k_1 == val:
|
|
return index_k
|
|
elif val < item_k_1:
|
|
fibb_k -= 1
|
|
elif val > item_k_1:
|
|
offset += fibonacci(fibb_k - 1)
|
|
fibb_k -= 2
|
|
return -1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|