mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
a8f05fe0a5
* Add doctests and type hints * Apply suggestions from code review * Update tarjans_scc.py * Update tarjans_scc.py --------- Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
107 lines
3.5 KiB
Python
107 lines
3.5 KiB
Python
from collections import deque
|
|
|
|
|
|
def tarjan(g: list[list[int]]) -> list[list[int]]:
|
|
"""
|
|
Tarjan's algo for finding strongly connected components in a directed graph
|
|
|
|
Uses two main attributes of each node to track reachability, the index of that node
|
|
within a component(index), and the lowest index reachable from that node(lowlink).
|
|
|
|
We then perform a dfs of the each component making sure to update these parameters
|
|
for each node and saving the nodes we visit on the way.
|
|
|
|
If ever we find that the lowest reachable node from a current node is equal to the
|
|
index of the current node then it must be the root of a strongly connected
|
|
component and so we save it and it's equireachable vertices as a strongly
|
|
connected component.
|
|
|
|
Complexity: strong_connect() is called at most once for each node and has a
|
|
complexity of O(|E|) as it is DFS.
|
|
Therefore this has complexity O(|V| + |E|) for a graph G = (V, E)
|
|
|
|
>>> tarjan([[2, 3, 4], [2, 3, 4], [0, 1, 3], [0, 1, 2], [1]])
|
|
[[4, 3, 1, 2, 0]]
|
|
>>> tarjan([[], [], [], []])
|
|
[[0], [1], [2], [3]]
|
|
>>> a = [0, 1, 2, 3, 4, 5, 4]
|
|
>>> b = [1, 0, 3, 2, 5, 4, 0]
|
|
>>> n = 7
|
|
>>> sorted(tarjan(create_graph(n, list(zip(a, b))))) == sorted(
|
|
... tarjan(create_graph(n, list(zip(a[::-1], b[::-1])))))
|
|
True
|
|
>>> a = [0, 1, 2, 3, 4, 5, 6]
|
|
>>> b = [0, 1, 2, 3, 4, 5, 6]
|
|
>>> sorted(tarjan(create_graph(n, list(zip(a, b)))))
|
|
[[0], [1], [2], [3], [4], [5], [6]]
|
|
"""
|
|
|
|
n = len(g)
|
|
stack: deque[int] = deque()
|
|
on_stack = [False for _ in range(n)]
|
|
index_of = [-1 for _ in range(n)]
|
|
lowlink_of = index_of[:]
|
|
|
|
def strong_connect(v: int, index: int, components: list[list[int]]) -> int:
|
|
index_of[v] = index # the number when this node is seen
|
|
lowlink_of[v] = index # lowest rank node reachable from here
|
|
index += 1
|
|
stack.append(v)
|
|
on_stack[v] = True
|
|
|
|
for w in g[v]:
|
|
if index_of[w] == -1:
|
|
index = strong_connect(w, index, components)
|
|
lowlink_of[v] = (
|
|
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
|
|
)
|
|
elif on_stack[w]:
|
|
lowlink_of[v] = (
|
|
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
|
|
)
|
|
|
|
if lowlink_of[v] == index_of[v]:
|
|
component = []
|
|
w = stack.pop()
|
|
on_stack[w] = False
|
|
component.append(w)
|
|
while w != v:
|
|
w = stack.pop()
|
|
on_stack[w] = False
|
|
component.append(w)
|
|
components.append(component)
|
|
return index
|
|
|
|
components: list[list[int]] = []
|
|
for v in range(n):
|
|
if index_of[v] == -1:
|
|
strong_connect(v, 0, components)
|
|
|
|
return components
|
|
|
|
|
|
def create_graph(n: int, edges: list[tuple[int, int]]) -> list[list[int]]:
|
|
"""
|
|
>>> n = 7
|
|
>>> source = [0, 0, 1, 2, 3, 3, 4, 4, 6]
|
|
>>> target = [1, 3, 2, 0, 1, 4, 5, 6, 5]
|
|
>>> edges = list(zip(source, target))
|
|
>>> create_graph(n, edges)
|
|
[[1, 3], [2], [0], [1, 4], [5, 6], [], [5]]
|
|
"""
|
|
g: list[list[int]] = [[] for _ in range(n)]
|
|
for u, v in edges:
|
|
g[u].append(v)
|
|
return g
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Test
|
|
n_vertices = 7
|
|
source = [0, 0, 1, 2, 3, 3, 4, 4, 6]
|
|
target = [1, 3, 2, 0, 1, 4, 5, 6, 5]
|
|
edges = list(zip(source, target))
|
|
g = create_graph(n_vertices, edges)
|
|
|
|
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
|