mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-07 18:10:55 +00:00
* add torch to requirements * add lenet architecture in pytorch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add type hints * remove file * add type hints * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update variable name * add fail test * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add newline * reformatting --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
83 lines
2.1 KiB
Python
83 lines
2.1 KiB
Python
"""
|
|
LeNet Network
|
|
|
|
Paper: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
|
|
"""
|
|
|
|
import numpy
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class LeNet(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
self.tanh = nn.Tanh()
|
|
self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2)
|
|
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels=1,
|
|
out_channels=6,
|
|
kernel_size=(5, 5),
|
|
stride=(1, 1),
|
|
padding=(0, 0),
|
|
)
|
|
self.conv2 = nn.Conv2d(
|
|
in_channels=6,
|
|
out_channels=16,
|
|
kernel_size=(5, 5),
|
|
stride=(1, 1),
|
|
padding=(0, 0),
|
|
)
|
|
self.conv3 = nn.Conv2d(
|
|
in_channels=16,
|
|
out_channels=120,
|
|
kernel_size=(5, 5),
|
|
stride=(1, 1),
|
|
padding=(0, 0),
|
|
)
|
|
|
|
self.linear1 = nn.Linear(120, 84)
|
|
self.linear2 = nn.Linear(84, 10)
|
|
|
|
def forward(self, image_array: numpy.ndarray) -> numpy.ndarray:
|
|
image_array = self.tanh(self.conv1(image_array))
|
|
image_array = self.avgpool(image_array)
|
|
image_array = self.tanh(self.conv2(image_array))
|
|
image_array = self.avgpool(image_array)
|
|
image_array = self.tanh(self.conv3(image_array))
|
|
|
|
image_array = image_array.reshape(image_array.shape[0], -1)
|
|
image_array = self.tanh(self.linear1(image_array))
|
|
image_array = self.linear2(image_array)
|
|
return image_array
|
|
|
|
|
|
def test_model(image_tensor: torch.tensor) -> bool:
|
|
"""
|
|
Test the model on an input batch of 64 images
|
|
|
|
Args:
|
|
image_tensor (torch.tensor): Batch of Images for the model
|
|
|
|
>>> test_model(torch.randn(64, 1, 32, 32))
|
|
True
|
|
|
|
"""
|
|
try:
|
|
model = LeNet()
|
|
output = model(image_tensor)
|
|
except RuntimeError:
|
|
return False
|
|
|
|
return output.shape == torch.zeros([64, 10]).shape
|
|
|
|
|
|
if __name__ == "__main__":
|
|
random_image_1 = torch.randn(64, 1, 32, 32)
|
|
random_image_2 = torch.randn(1, 32, 32)
|
|
|
|
print(f"random_image_1 Model Passed: {test_model(random_image_1)}")
|
|
print(f"\nrandom_image_2 Model Passed: {test_model(random_image_2)}")
|