Python/arithmetic_analysis/newton_raphson.py
Rohan Anand 8d6f837303
Update arithmetic_analysis/newton_raphson.py
Co-authored-by: Christian Clauss <cclauss@me.com>
2023-07-16 20:42:35 +05:30

69 lines
2.3 KiB
Python

# Implementing Newton Raphson method in Python
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
# The Newton-Raphson method (also known as Newton's method) is a way to
# quickly find a good approximation for the root of a real-valued function.
# https://en.wikipedia.org/wiki/Newton%27s_method
from __future__ import annotations
from sympy import diff, symbols, sympify
def newton_raphson(
func: str, start_point: float, precision: float = 10**-10
) -> float:
"""Finds root from the point 'a' onwards by Newton-Raphson method
>>> newton_raphson("sin(x)", 2)
3.1415926536808043
>>> newton_raphson("x**2 - 5*x +2", 0.4)
0.4384471871911696
>>> newton_raphson("x**2 - 5", 0.1)
2.23606797749979
>>> newton_raphson("log(x)- 1", 2)
2.718281828458938
>>> from scipy.optimize import newton
>>> all(newton_raphson("log(x)- 1", 2) == newton("log(x)- 1", 2) for precision in 10, 100, 1000, 10000))
True
>>> newton_raphson("log(x)- 1", 2, 0)
Traceback (most recent call last):
...
ValueError: precision must be greater than zero
>>> newton_raphson("log(x)- 1", 2, -1)
Traceback (most recent call last):
...
ValueError: precision must be greater than zero
"""
x = start_point
symbol = symbols("x")
# expressions to be represented symbolically and manipulated algebraically
expression = sympify(func)
# calculates the derivative value at the current x value
derivative = diff(expression, symbol)
max_iterations = 100
for _ in range(max_iterations):
function_value = expression.subs(symbol, x)
derivative_value = derivative.subs(symbol, x)
if abs(function_value) < precision:
return float(x)
x = x - (function_value / derivative_value)
return float(x)
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
# Find root of polynomial
print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}")
# Find Square Root of 5
print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}")
# Exponential Roots
print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")