mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 17:20:16 +00:00
2b27086c00
A python class that implements the Hill cipher algorithm.
168 lines
5.6 KiB
Python
168 lines
5.6 KiB
Python
"""
|
|
|
|
Hill Cipher:
|
|
The below defined class 'HillCipher' implements the Hill Cipher algorithm.
|
|
The Hill Cipher is an algorithm that implements modern linear algebra techniques
|
|
In this algortihm, you have an encryption key matrix. This is what will be used
|
|
in encoding and decoding your text.
|
|
|
|
Algortihm:
|
|
Let the order of the encryption key be N (as it is a square matrix).
|
|
Your text is divided into batches of length N and converted to numerical vectors
|
|
by a simple mapping starting with A=0 and so on.
|
|
|
|
The key is then mulitplied with the newly created batch vector to obtain the
|
|
encoded vector. After each multiplication modular 36 calculations are performed
|
|
on the vectors so as to bring the numbers between 0 and 36 and then mapped with
|
|
their corresponding alphanumerics.
|
|
|
|
While decrypting, the decrypting key is found which is the inverse of the
|
|
encrypting key modular 36. The same process is repeated for decrypting to get
|
|
the original message back.
|
|
|
|
Constraints:
|
|
The determinant of the encryption key matrix must be relatively prime w.r.t 36.
|
|
|
|
Note:
|
|
The algorithm implemented in this code considers only alphanumerics in the text.
|
|
If the length of the text to be encrypted is not a multiple of the
|
|
break key(the length of one batch of letters),the last character of the text
|
|
is added to the text until the length of the text reaches a multiple of
|
|
the break_key. So the text after decrypting might be a little different than
|
|
the original text.
|
|
|
|
References:
|
|
https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf
|
|
https://www.youtube.com/watch?v=kfmNeskzs2o
|
|
https://www.youtube.com/watch?v=4RhLNDqcjpA
|
|
|
|
"""
|
|
|
|
import numpy
|
|
|
|
|
|
def gcd(a, b):
|
|
if a == 0:
|
|
return b
|
|
return gcd(b%a, a)
|
|
|
|
|
|
class HillCipher:
|
|
key_string = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
|
|
# This cipher takes alphanumerics into account
|
|
# i.e. a total of 36 characters
|
|
|
|
replaceLetters = lambda self, letter: self.key_string.index(letter)
|
|
replaceNumbers = lambda self, num: self.key_string[round(num)]
|
|
|
|
# take x and return x % len(key_string)
|
|
modulus = numpy.vectorize(lambda x: x % 36)
|
|
|
|
toInt = numpy.vectorize(lambda x: round(x))
|
|
|
|
def __init__(self, encrypt_key):
|
|
"""
|
|
encrypt_key is an NxN numpy matrix
|
|
"""
|
|
self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key
|
|
self.checkDeterminant() # validate the determinant of the encryption key
|
|
self.decrypt_key = None
|
|
self.break_key = encrypt_key.shape[0]
|
|
|
|
def checkDeterminant(self):
|
|
det = round(numpy.linalg.det(self.encrypt_key))
|
|
|
|
if det < 0:
|
|
det = det % len(self.key_string)
|
|
|
|
req_l = len(self.key_string)
|
|
if gcd(det, len(self.key_string)) != 1:
|
|
raise ValueError("discriminant modular {0} of encryption key({1}) is not co prime w.r.t {2}.\nTry another key.".format(req_l, det, req_l))
|
|
|
|
def processText(self, text):
|
|
text = list(text.upper())
|
|
text = [char for char in text if char in self.key_string]
|
|
|
|
last = text[-1]
|
|
while len(text) % self.break_key != 0:
|
|
text.append(last)
|
|
|
|
return ''.join(text)
|
|
|
|
def encrypt(self, text):
|
|
text = self.processText(text.upper())
|
|
encrypted = ''
|
|
|
|
for i in range(0, len(text) - self.break_key + 1, self.break_key):
|
|
batch = text[i:i+self.break_key]
|
|
batch_vec = list(map(self.replaceLetters, batch))
|
|
batch_vec = numpy.matrix([batch_vec]).T
|
|
batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[0]
|
|
encrypted_batch = ''.join(list(map(self.replaceNumbers, batch_encrypted)))
|
|
encrypted += encrypted_batch
|
|
|
|
return encrypted
|
|
|
|
def makeDecryptKey(self):
|
|
det = round(numpy.linalg.det(self.encrypt_key))
|
|
|
|
if det < 0:
|
|
det = det % len(self.key_string)
|
|
det_inv = None
|
|
for i in range(len(self.key_string)):
|
|
if (det * i) % len(self.key_string) == 1:
|
|
det_inv = i
|
|
break
|
|
|
|
inv_key = det_inv * numpy.linalg.det(self.encrypt_key) *\
|
|
numpy.linalg.inv(self.encrypt_key)
|
|
|
|
return self.toInt(self.modulus(inv_key))
|
|
|
|
def decrypt(self, text):
|
|
self.decrypt_key = self.makeDecryptKey()
|
|
text = self.processText(text.upper())
|
|
decrypted = ''
|
|
|
|
for i in range(0, len(text) - self.break_key + 1, self.break_key):
|
|
batch = text[i:i+self.break_key]
|
|
batch_vec = list(map(self.replaceLetters, batch))
|
|
batch_vec = numpy.matrix([batch_vec]).T
|
|
batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[0]
|
|
decrypted_batch = ''.join(list(map(self.replaceNumbers, batch_decrypted)))
|
|
decrypted += decrypted_batch
|
|
|
|
return decrypted
|
|
|
|
|
|
def main():
|
|
N = int(input("Enter the order of the encryption key: "))
|
|
hill_matrix = []
|
|
|
|
print("Enter each row of the encryption key with space separated integers")
|
|
for i in range(N):
|
|
row = list(map(int, input().split()))
|
|
hill_matrix.append(row)
|
|
|
|
hc = HillCipher(numpy.matrix(hill_matrix))
|
|
|
|
print("Would you like to encrypt or decrypt some text? (1 or 2)")
|
|
option = input("""
|
|
1. Encrypt
|
|
2. Decrypt
|
|
"""
|
|
)
|
|
|
|
if option == '1':
|
|
text_e = input("What text would you like to encrypt?: ")
|
|
print("Your encrypted text is:")
|
|
print(hc.encrypt(text_e))
|
|
elif option == '2':
|
|
text_d = input("What text would you like to decrypt?: ")
|
|
print("Your decrypted text is:")
|
|
print(hc.decrypt(text_d))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|