Python/machine_learning/multinomial_naive_bayes_classifier.py
2023-11-28 19:08:28 +01:00

152 lines
5.0 KiB
Python

"""
Implementation from scratch of a Multinomial Naive Bayes Classifier.
The algorithm is trained and tested on the twenty_newsgroup dataset
from sklearn to perform text classification
Here the Wikipedia page to understand the theory behind this kind
of probabilistic models:
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
"""
import doctest
import numpy as np
import scipy
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
def group_indices_by_target(targets: np.ndarray) -> dict[int, list[int]]:
"""
Associates to each target label the indices of the examples with that label
Parameters
----------
targets : array-like of shape (n_samples,)
Target labels
Returns
----------
grouped_indices : dict of (label : list)
Maps each target label to the list of indices of the
examples with that label
Example
----------
>>> y = np.array([1, 2, 3, 1, 2, 5])
>>> group_indices_by_target(y)
{1: [0, 3], 2: [1, 4], 3: [2], 5: [5]}
"""
grouped_indices: dict[int, list[int]] = {}
for i, y in enumerate(targets):
if y not in grouped_indices:
grouped_indices[y] = []
grouped_indices[y].append(i)
return grouped_indices
class MultinomialNBClassifier:
def __init__(self, alpha: int = 1) -> None:
self.classes: list[int] = []
self.features_probs: np.ndarray = np.array([])
self.priors: np.ndarray = np.array([])
self.alpha = alpha
def fit(self, data: scipy.sparse.csr_matrix, targets: np.ndarray) -> None:
"""
Parameters
----------
data : scipy.sparse.csr_matrix of shape (n_samples, n_features)
Multinomial training examples
targets : array-like of shape (n_samples,)
Target labels
Example
----------
>>> from scipy import sparse
>>> rng = np.random.RandomState(1)
>>> data = rng.randint(5, size=(6, 100))
>>> data = sparse.csr_matrix(data)
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> model = MultinomialNBClassifier()
>>> print(model.fit(data, y))
None
"""
n_examples, n_features = data.shape
grouped_indices = group_indices_by_target(targets)
self.classes = list(grouped_indices.keys())
self.priors = np.zeros(shape=len(self.classes))
self.features_probs = np.zeros(shape=(len(self.classes), n_features))
for i, class_i in enumerate(self.classes):
data_class_i = data[grouped_indices[class_i]]
prior_class_i = data_class_i.shape[0] / n_examples
self.priors[i] = prior_class_i
tot_features_count = data_class_i.sum() # count of all features in class_i
features_count = np.array(data_class_i.sum(axis=0))[0]
for j, n_j in enumerate(features_count):
self.features_probs[i][j] = (self.alpha + n_j) / (
tot_features_count + self.alpha * n_features
)
def predict(self, data: scipy.sparse.csr_matrix) -> np.ndarray:
"""
Parameters
----------
data : scipy.sparse.csr_matrix of shape (n_samples, n_features)
Multinomial test examples
Returns
----------
y_pred : ndarray of shape (n_samples,)
Predicted target labels of test examples
Example
----------
>>> from scipy import sparse
>>> rng = np.random.RandomState(1)
>>> data = rng.randint(5, size=(6, 100))
>>> data = sparse.csr_matrix(data)
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> model = MultinomialNBClassifier()
>>> model.fit(data, y)
>>> model.predict(data[2:3])
array([3])
"""
y_pred = []
log_features_probs = np.log(self.features_probs)
log_priors = np.log(self.priors)
for instance in data:
theta = instance.multiply(log_features_probs).sum(axis=1)
likelihood = [
log_prior_class_i + theta[i]
for i, log_prior_class_i in enumerate(log_priors)
]
y_pred.append(self.classes[np.argmax(likelihood)])
return np.array(y_pred)
if __name__ == "__main__":
newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test")
x_train = newsgroups_train["data"]
y_train = newsgroups_train["target"]
x_test = newsgroups_test["data"]
y_test = newsgroups_test["target"]
vectorizer = TfidfVectorizer(stop_words="english")
x_train = vectorizer.fit_transform(x_train)
x_test = vectorizer.transform(x_test)
model = MultinomialNBClassifier()
print("Start training")
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(
"Accuracy of naive bayes text classifier: "
+ str(accuracy_score(y_test, y_pred))
)
doctest.testmod()