Python/project_euler/problem_11/sol1.py
Christian Clauss 47a9ea2b0b
Simplify code by dropping support for legacy Python (#1143)
* Simplify code by dropping support for legacy Python

* sort() --> sorted()
2019-08-19 15:37:49 +02:00

94 lines
3.0 KiB
Python

"""
What is the greatest product of four adjacent numbers (horizontally,
vertically, or diagonally) in this 20x20 array?
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
"""
import os
def largest_product(grid):
nColumns = len(grid[0])
nRows = len(grid)
largest = 0
lrDiagProduct = 0
rlDiagProduct = 0
# Check vertically, horizontally, diagonally at the same time (only works
# for nxn grid)
for i in range(nColumns):
for j in range(nRows - 3):
vertProduct = (
grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i]
)
horzProduct = (
grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3]
)
# Left-to-right diagonal (\) product
if i < nColumns - 3:
lrDiagProduct = (
grid[i][j]
* grid[i + 1][j + 1]
* grid[i + 2][j + 2]
* grid[i + 3][j + 3]
)
# Right-to-left diagonal(/) product
if i > 2:
rlDiagProduct = (
grid[i][j]
* grid[i - 1][j + 1]
* grid[i - 2][j + 2]
* grid[i - 3][j + 3]
)
maxProduct = max(
vertProduct, horzProduct, lrDiagProduct, rlDiagProduct
)
if maxProduct > largest:
largest = maxProduct
return largest
def solution():
"""Returns the sum of all the multiples of 3 or 5 below n.
>>> solution()
70600674
"""
grid = []
with open(os.path.dirname(__file__) + "/grid.txt") as file:
for line in file:
grid.append(line.strip("\n").split(" "))
grid = [[int(i) for i in grid[j]] for j in range(len(grid))]
return largest_product(grid)
if __name__ == "__main__":
print(solution())