Python/maths/numerical_analysis/proper_fractions.py
Margaret 8faf823e83
adding a proper fractions algorithm (#11224)
* adding a proper fractions algorithm

* Implementing suggestions in maths/numerical_analysis/proper_fractions.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Implementing suggestions to proper_fractions.py

* Fixing ruff errors in proper_fractions.py

* Apply suggestions from code review

* ruff check --output-format=github .

* Update maths/numerical_analysis/proper_fractions.py

* Update proper_fractions.py

---------

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-03-20 14:33:40 +01:00

41 lines
1.1 KiB
Python

from math import gcd
def proper_fractions(denominator: int) -> list[str]:
"""
this algorithm returns a list of proper fractions, in the
range between 0 and 1, which can be formed with the given denominator
https://en.wikipedia.org/wiki/Fraction#Proper_and_improper_fractions
>>> proper_fractions(10)
['1/10', '3/10', '7/10', '9/10']
>>> proper_fractions(5)
['1/5', '2/5', '3/5', '4/5']
>>> proper_fractions(-15)
Traceback (most recent call last):
...
ValueError: The Denominator Cannot be less than 0
>>> proper_fractions(0)
[]
>>> proper_fractions(1.2)
Traceback (most recent call last):
...
ValueError: The Denominator must be an integer
"""
if denominator < 0:
raise ValueError("The Denominator Cannot be less than 0")
elif isinstance(denominator, float):
raise ValueError("The Denominator must be an integer")
return [
f"{numerator}/{denominator}"
for numerator in range(1, denominator)
if gcd(numerator, denominator) == 1
]
if __name__ == "__main__":
from doctest import testmod
testmod()