Python/graphs/johnson_graph.py
2024-10-28 02:18:28 +00:00

101 lines
3.0 KiB
Python

import heapq
import sys
# First implementation of johnson algorithm
# Steps followed to implement this algorithm is given in the below link:
# https://brilliant.org/wiki/johnsons-algorithm/
class JohnsonGraph:
def __init__(self) -> None:
self.edges: list[str] = []
self.graph: dict[str, list] = {}
# add vertices for a graph
def add_vertices(self, u: int) -> None:
self.graph[u] = []
# assign weights for each edges formed of the directed graph
def add_edge(self, u: str, v: str, w: int) -> None:
self.edges.append((u, v, w))
self.graph[u].append((v, w))
# perform a dijkstra algorithm on a directed graph
def dijkstra(self, s: str) -> dict:
distances = {vertex: sys.maxsize - 1 for vertex in self.graph}
pq = [(0, s)]
distances[s] = 0
while pq:
weight, v = heapq.heappop(pq)
if weight > distances[v]:
continue
for node, w in self.graph[v]:
if distances[v] + w < distances[node]:
distances[node] = distances[v] + w
heapq.heappush(pq, (distances[node], node))
return distances
# carry out the bellman ford algorithm for a node and estimate its distance vector
def bellman_ford(self, s: str) -> dict:
distances = {vertex: sys.maxsize - 1 for vertex in self.graph}
distances[s] = 0
for u in self.graph:
for u, v, w in self.edges:
if distances[u] != sys.maxsize - 1 and distances[u] + w < distances[v]:
distances[v] = distances[u] + w
return distances
# perform the johnson algorithm to handle the negative weights that
# could not be handled by either the dijkstra
# or the bellman ford algorithm efficiently
def johnson_algo(self) -> list[dict]:
self.add_vertices("#")
for v in self.graph:
if v != "#":
self.add_edge("#", v, 0)
n = self.bellman_ford("#")
for i in range(len(self.edges)):
u, v, weight = self.edges[i]
self.edges[i] = (u, v, weight + n[u] - n[v])
self.graph.pop("#")
self.edges = [(u, v, w) for u, v, w in self.edges if u != "#"]
for u in self.graph:
self.graph[u] = [(v, weight) for x, v, weight in self.edges if x == u]
distances = []
for u in self.graph:
new_dist = self.dijkstra(u)
for v in self.graph:
if new_dist[v] < sys.maxsize - 1:
new_dist[v] += n[v] - n[u]
distances.append(new_dist)
return distances
g = JohnsonGraph()
# this a complete connected graph
g.add_vertices("A")
g.add_vertices("B")
g.add_vertices("C")
g.add_vertices("D")
g.add_vertices("E")
g.add_edge("A", "B", 1)
g.add_edge("A", "C", 3)
g.add_edge("B", "D", 4)
g.add_edge("D", "E", 2)
g.add_edge("E", "C", -2)
optimal_paths = g.johnson_algo()
print("Print all optimal paths of a graph using Johnson Algorithm")
for i, row in enumerate(optimal_paths):
print(f"{i}: {row}")