mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
07e991d553
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038) * refactor: Fix naming conventions (#7038) * Update arithmetic_analysis/lu_decomposition.py Co-authored-by: Christian Clauss <cclauss@me.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038) * chore: Fix naming conventions in doctests (#7038) * fix: Temporarily disable project euler problem 104 (#7069) * chore: Fix naming conventions in doctests (#7038) Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
315 lines
8.5 KiB
Python
315 lines
8.5 KiB
Python
import heapq
|
|
|
|
import numpy as np
|
|
|
|
TPos = tuple[int, int]
|
|
|
|
|
|
class PriorityQueue:
|
|
def __init__(self):
|
|
self.elements = []
|
|
self.set = set()
|
|
|
|
def minkey(self):
|
|
if not self.empty():
|
|
return self.elements[0][0]
|
|
else:
|
|
return float("inf")
|
|
|
|
def empty(self):
|
|
return len(self.elements) == 0
|
|
|
|
def put(self, item, priority):
|
|
if item not in self.set:
|
|
heapq.heappush(self.elements, (priority, item))
|
|
self.set.add(item)
|
|
else:
|
|
# update
|
|
# print("update", item)
|
|
temp = []
|
|
(pri, x) = heapq.heappop(self.elements)
|
|
while x != item:
|
|
temp.append((pri, x))
|
|
(pri, x) = heapq.heappop(self.elements)
|
|
temp.append((priority, item))
|
|
for (pro, xxx) in temp:
|
|
heapq.heappush(self.elements, (pro, xxx))
|
|
|
|
def remove_element(self, item):
|
|
if item in self.set:
|
|
self.set.remove(item)
|
|
temp = []
|
|
(pro, x) = heapq.heappop(self.elements)
|
|
while x != item:
|
|
temp.append((pro, x))
|
|
(pro, x) = heapq.heappop(self.elements)
|
|
for (prito, yyy) in temp:
|
|
heapq.heappush(self.elements, (prito, yyy))
|
|
|
|
def top_show(self):
|
|
return self.elements[0][1]
|
|
|
|
def get(self):
|
|
(priority, item) = heapq.heappop(self.elements)
|
|
self.set.remove(item)
|
|
return (priority, item)
|
|
|
|
|
|
def consistent_heuristic(p: TPos, goal: TPos):
|
|
# euclidean distance
|
|
a = np.array(p)
|
|
b = np.array(goal)
|
|
return np.linalg.norm(a - b)
|
|
|
|
|
|
def heuristic_2(p: TPos, goal: TPos):
|
|
# integer division by time variable
|
|
return consistent_heuristic(p, goal) // t
|
|
|
|
|
|
def heuristic_1(p: TPos, goal: TPos):
|
|
# manhattan distance
|
|
return abs(p[0] - goal[0]) + abs(p[1] - goal[1])
|
|
|
|
|
|
def key(start: TPos, i: int, goal: TPos, g_function: dict[TPos, float]):
|
|
ans = g_function[start] + W1 * heuristics[i](start, goal)
|
|
return ans
|
|
|
|
|
|
def do_something(back_pointer, goal, start):
|
|
grid = np.chararray((n, n))
|
|
for i in range(n):
|
|
for j in range(n):
|
|
grid[i][j] = "*"
|
|
|
|
for i in range(n):
|
|
for j in range(n):
|
|
if (j, (n - 1) - i) in blocks:
|
|
grid[i][j] = "#"
|
|
|
|
grid[0][(n - 1)] = "-"
|
|
x = back_pointer[goal]
|
|
while x != start:
|
|
(x_c, y_c) = x
|
|
# print(x)
|
|
grid[(n - 1) - y_c][x_c] = "-"
|
|
x = back_pointer[x]
|
|
grid[(n - 1)][0] = "-"
|
|
|
|
for i in range(n):
|
|
for j in range(n):
|
|
if (i, j) == (0, n - 1):
|
|
print(grid[i][j], end=" ")
|
|
print("<-- End position", end=" ")
|
|
else:
|
|
print(grid[i][j], end=" ")
|
|
print()
|
|
print("^")
|
|
print("Start position")
|
|
print()
|
|
print("# is an obstacle")
|
|
print("- is the path taken by algorithm")
|
|
print("PATH TAKEN BY THE ALGORITHM IS:-")
|
|
x = back_pointer[goal]
|
|
while x != start:
|
|
print(x, end=" ")
|
|
x = back_pointer[x]
|
|
print(x)
|
|
quit()
|
|
|
|
|
|
def valid(p: TPos):
|
|
if p[0] < 0 or p[0] > n - 1:
|
|
return False
|
|
if p[1] < 0 or p[1] > n - 1:
|
|
return False
|
|
return True
|
|
|
|
|
|
def expand_state(
|
|
s,
|
|
j,
|
|
visited,
|
|
g_function,
|
|
close_list_anchor,
|
|
close_list_inad,
|
|
open_list,
|
|
back_pointer,
|
|
):
|
|
for itera in range(n_heuristic):
|
|
open_list[itera].remove_element(s)
|
|
# print("s", s)
|
|
# print("j", j)
|
|
(x, y) = s
|
|
left = (x - 1, y)
|
|
right = (x + 1, y)
|
|
up = (x, y + 1)
|
|
down = (x, y - 1)
|
|
|
|
for neighbours in [left, right, up, down]:
|
|
if neighbours not in blocks:
|
|
if valid(neighbours) and neighbours not in visited:
|
|
# print("neighbour", neighbours)
|
|
visited.add(neighbours)
|
|
back_pointer[neighbours] = -1
|
|
g_function[neighbours] = float("inf")
|
|
|
|
if valid(neighbours) and g_function[neighbours] > g_function[s] + 1:
|
|
g_function[neighbours] = g_function[s] + 1
|
|
back_pointer[neighbours] = s
|
|
if neighbours not in close_list_anchor:
|
|
open_list[0].put(neighbours, key(neighbours, 0, goal, g_function))
|
|
if neighbours not in close_list_inad:
|
|
for var in range(1, n_heuristic):
|
|
if key(neighbours, var, goal, g_function) <= W2 * key(
|
|
neighbours, 0, goal, g_function
|
|
):
|
|
open_list[j].put(
|
|
neighbours, key(neighbours, var, goal, g_function)
|
|
)
|
|
|
|
|
|
def make_common_ground():
|
|
some_list = []
|
|
for x in range(1, 5):
|
|
for y in range(1, 6):
|
|
some_list.append((x, y))
|
|
|
|
for x in range(15, 20):
|
|
some_list.append((x, 17))
|
|
|
|
for x in range(10, 19):
|
|
for y in range(1, 15):
|
|
some_list.append((x, y))
|
|
|
|
# L block
|
|
for x in range(1, 4):
|
|
for y in range(12, 19):
|
|
some_list.append((x, y))
|
|
for x in range(3, 13):
|
|
for y in range(16, 19):
|
|
some_list.append((x, y))
|
|
return some_list
|
|
|
|
|
|
heuristics = {0: consistent_heuristic, 1: heuristic_1, 2: heuristic_2}
|
|
|
|
blocks_blk = [
|
|
(0, 1),
|
|
(1, 1),
|
|
(2, 1),
|
|
(3, 1),
|
|
(4, 1),
|
|
(5, 1),
|
|
(6, 1),
|
|
(7, 1),
|
|
(8, 1),
|
|
(9, 1),
|
|
(10, 1),
|
|
(11, 1),
|
|
(12, 1),
|
|
(13, 1),
|
|
(14, 1),
|
|
(15, 1),
|
|
(16, 1),
|
|
(17, 1),
|
|
(18, 1),
|
|
(19, 1),
|
|
]
|
|
blocks_all = make_common_ground()
|
|
|
|
|
|
blocks = blocks_blk
|
|
# hyper parameters
|
|
W1 = 1
|
|
W2 = 1
|
|
n = 20
|
|
n_heuristic = 3 # one consistent and two other inconsistent
|
|
|
|
# start and end destination
|
|
start = (0, 0)
|
|
goal = (n - 1, n - 1)
|
|
|
|
t = 1
|
|
|
|
|
|
def multi_a_star(start: TPos, goal: TPos, n_heuristic: int):
|
|
g_function = {start: 0, goal: float("inf")}
|
|
back_pointer = {start: -1, goal: -1}
|
|
open_list = []
|
|
visited = set()
|
|
|
|
for i in range(n_heuristic):
|
|
open_list.append(PriorityQueue())
|
|
open_list[i].put(start, key(start, i, goal, g_function))
|
|
|
|
close_list_anchor: list[int] = []
|
|
close_list_inad: list[int] = []
|
|
while open_list[0].minkey() < float("inf"):
|
|
for i in range(1, n_heuristic):
|
|
# print(open_list[0].minkey(), open_list[i].minkey())
|
|
if open_list[i].minkey() <= W2 * open_list[0].minkey():
|
|
global t
|
|
t += 1
|
|
if g_function[goal] <= open_list[i].minkey():
|
|
if g_function[goal] < float("inf"):
|
|
do_something(back_pointer, goal, start)
|
|
else:
|
|
_, get_s = open_list[i].top_show()
|
|
visited.add(get_s)
|
|
expand_state(
|
|
get_s,
|
|
i,
|
|
visited,
|
|
g_function,
|
|
close_list_anchor,
|
|
close_list_inad,
|
|
open_list,
|
|
back_pointer,
|
|
)
|
|
close_list_inad.append(get_s)
|
|
else:
|
|
if g_function[goal] <= open_list[0].minkey():
|
|
if g_function[goal] < float("inf"):
|
|
do_something(back_pointer, goal, start)
|
|
else:
|
|
get_s = open_list[0].top_show()
|
|
visited.add(get_s)
|
|
expand_state(
|
|
get_s,
|
|
0,
|
|
visited,
|
|
g_function,
|
|
close_list_anchor,
|
|
close_list_inad,
|
|
open_list,
|
|
back_pointer,
|
|
)
|
|
close_list_anchor.append(get_s)
|
|
print("No path found to goal")
|
|
print()
|
|
for i in range(n - 1, -1, -1):
|
|
for j in range(n):
|
|
if (j, i) in blocks:
|
|
print("#", end=" ")
|
|
elif (j, i) in back_pointer:
|
|
if (j, i) == (n - 1, n - 1):
|
|
print("*", end=" ")
|
|
else:
|
|
print("-", end=" ")
|
|
else:
|
|
print("*", end=" ")
|
|
if (j, i) == (n - 1, n - 1):
|
|
print("<-- End position", end=" ")
|
|
print()
|
|
print("^")
|
|
print("Start position")
|
|
print()
|
|
print("# is an obstacle")
|
|
print("- is the path taken by algorithm")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
multi_a_star(start, goal, n_heuristic)
|