Python/dynamic_programming/knapsack.py
Caeden 4d0c830d2c
Add flake8 pluin flake8 bugbear to pre-commit (#7132)
* ci(pre-commit): Add ``flake8-builtins`` additional dependency to ``pre-commit`` (#7104)

* refactor: Fix ``flake8-builtins`` (#7104)

* fix(lru_cache): Fix naming conventions in docstrings (#7104)

* ci(pre-commit): Order additional dependencies alphabetically (#7104)

* fix(lfu_cache): Correct function name in docstring (#7104)

* Update strings/snake_case_to_camel_pascal_case.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update data_structures/stacks/next_greater_element.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update digital_image_processing/index_calculation.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update graphs/prim.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update hashes/djb2.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* refactor: Rename `_builtin` to `builtin_` ( #7104)

* fix: Rename all instances (#7104)

* refactor: Update variable names (#7104)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* ci: Create ``tox.ini`` and ignore ``A003`` (#7123)

* revert: Remove function name changes (#7104)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Rename tox.ini to .flake8

* Update data_structures/heap/heap.py

Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>

* refactor: Rename `next_` to `next_item` (#7104)

* ci(pre-commit): Add `flake8` plugin `flake8-bugbear` (#7127)

* refactor: Follow `flake8-bugbear` plugin (#7127)

* fix: Correct `knapsack` code (#7127)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
2022-10-13 18:03:06 +02:00

151 lines
5.0 KiB
Python

"""
Given weights and values of n items, put these items in a knapsack of
capacity W to get the maximum total value in the knapsack.
Note that only the integer weights 0-1 knapsack problem is solvable
using dynamic programming.
"""
def mf_knapsack(i, wt, val, j):
"""
This code involves the concept of memory functions. Here we solve the subproblems
which are needed unlike the below example
F is a 2D array with -1s filled up
"""
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
val = mf_knapsack(i - 1, wt, val, j)
else:
val = max(
mf_knapsack(i - 1, wt, val, j),
mf_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1],
)
f[i][j] = val
return f[i][j]
def knapsack(w, wt, val, n):
dp = [[0 for i in range(w + 1)] for j in range(n + 1)]
for i in range(1, n + 1):
for w_ in range(1, w + 1):
if wt[i - 1] <= w_:
dp[i][w_] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_])
else:
dp[i][w_] = dp[i - 1][w_]
return dp[n][w_], dp
def knapsack_with_example_solution(w: int, wt: list, val: list):
"""
Solves the integer weights knapsack problem returns one of
the several possible optimal subsets.
Parameters
---------
W: int, the total maximum weight for the given knapsack problem.
wt: list, the vector of weights for all items where wt[i] is the weight
of the i-th item.
val: list, the vector of values for all items where val[i] is the value
of the i-th item
Returns
-------
optimal_val: float, the optimal value for the given knapsack problem
example_optional_set: set, the indices of one of the optimal subsets
which gave rise to the optimal value.
Examples
-------
>>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22])
(142, {2, 3, 4})
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4])
(8, {3, 4})
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4])
Traceback (most recent call last):
...
ValueError: The number of weights must be the same as the number of values.
But got 4 weights and 3 values
"""
if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))):
raise ValueError(
"Both the weights and values vectors must be either lists or tuples"
)
num_items = len(wt)
if num_items != len(val):
raise ValueError(
"The number of weights must be the "
"same as the number of values.\nBut "
f"got {num_items} weights and {len(val)} values"
)
for i in range(num_items):
if not isinstance(wt[i], int):
raise TypeError(
"All weights must be integers but "
f"got weight of type {type(wt[i])} at index {i}"
)
optimal_val, dp_table = knapsack(w, wt, val, num_items)
example_optional_set: set = set()
_construct_solution(dp_table, wt, num_items, w, example_optional_set)
return optimal_val, example_optional_set
def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set):
"""
Recursively reconstructs one of the optimal subsets given
a filled DP table and the vector of weights
Parameters
---------
dp: list of list, the table of a solved integer weight dynamic programming problem
wt: list or tuple, the vector of weights of the items
i: int, the index of the item under consideration
j: int, the current possible maximum weight
optimal_set: set, the optimal subset so far. This gets modified by the function.
Returns
-------
None
"""
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(dp, wt, i - 1, j, optimal_set)
else:
optimal_set.add(i)
_construct_solution(dp, wt, i - 1, j - wt[i - 1], optimal_set)
if __name__ == "__main__":
"""
Adding test case for knapsack
"""
val = [3, 2, 4, 4]
wt = [4, 3, 2, 3]
n = 4
w = 6
f = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)]
optimal_solution, _ = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)