mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
363 lines
9.6 KiB
Python
363 lines
9.6 KiB
Python
"""
|
|
Fibonacci Heap
|
|
A more efficient priority queue implementation that provides amortized time bounds
|
|
that are better than those of the binary and binomial heaps.
|
|
reference: https://en.wikipedia.org/wiki/Fibonacci_heap
|
|
|
|
Operations supported:
|
|
- Insert: O(1) amortized
|
|
- Find minimum: O(1)
|
|
- Delete minimum: O(log n) amortized
|
|
- Decrease key: O(1) amortized
|
|
- Merge: O(1)
|
|
"""
|
|
|
|
class Node:
|
|
"""
|
|
A node in a Fibonacci heap.
|
|
|
|
Args:
|
|
val: The value stored in the node.
|
|
|
|
Attributes:
|
|
val: The value stored in the node.
|
|
parent: Reference to parent node.
|
|
child: Reference to one child node.
|
|
left: Reference to left sibling.
|
|
right: Reference to right sibling.
|
|
degree: Number of children.
|
|
mark: Boolean indicating if node has lost a child.
|
|
"""
|
|
def __init__(self, val):
|
|
self.val = val
|
|
self.parent = None
|
|
self.child = None
|
|
self.left = self
|
|
self.right = self
|
|
self.degree = 0
|
|
self.mark = False
|
|
|
|
def add_sibling(self, node):
|
|
"""
|
|
Adds a node as a sibling to the current node.
|
|
|
|
Args:
|
|
node: The node to add as a sibling.
|
|
"""
|
|
node.left = self
|
|
node.right = self.right
|
|
self.right.left = node
|
|
self.right = node
|
|
|
|
def add_child(self, node):
|
|
"""
|
|
Adds a node as a child of the current node.
|
|
|
|
Args:
|
|
node: The node to add as a child.
|
|
"""
|
|
node.parent = self
|
|
if not self.child:
|
|
self.child = node
|
|
else:
|
|
self.child.add_sibling(node)
|
|
self.degree += 1
|
|
|
|
def remove(self):
|
|
"""Removes this node from its sibling list."""
|
|
self.left.right = self.right
|
|
self.right.left = self.left
|
|
|
|
|
|
class FibonacciHeap:
|
|
"""
|
|
A Fibonacci heap implementation providing
|
|
amortized efficient priority queue operations.
|
|
|
|
This implementation provides the following time complexities:
|
|
- Insert: O(1) amortized
|
|
- Find minimum: O(1)
|
|
- Delete minimum: O(log n) amortized
|
|
- Decrease key: O(1) amortized
|
|
- Merge: O(1)
|
|
|
|
Example:
|
|
>>> heap = FibonacciHeap()
|
|
>>> node1 = heap.insert(3)
|
|
>>> node2 = heap.insert(2)
|
|
>>> node3 = heap.insert(15)
|
|
>>> heap.peek()
|
|
2
|
|
>>> heap.delete_min()
|
|
2
|
|
>>> heap.peek()
|
|
3
|
|
>>> other_heap = FibonacciHeap()
|
|
>>> node4 = other_heap.insert(1)
|
|
>>> heap.merge_heaps(other_heap)
|
|
>>> heap.peek()
|
|
1
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Initializes an empty Fibonacci heap."""
|
|
self.min_node = None
|
|
self.size = 0
|
|
|
|
def is_empty(self):
|
|
"""
|
|
Checks if the heap is empty.
|
|
|
|
Returns:
|
|
bool: True if heap is empty, False otherwise.
|
|
"""
|
|
return self.min_node is None
|
|
|
|
def insert(self, val):
|
|
"""
|
|
Inserts a new value into the heap.
|
|
|
|
Args:
|
|
val: Value to insert.
|
|
|
|
Returns:
|
|
Node: The newly created node.
|
|
"""
|
|
node = Node(val)
|
|
if not self.min_node:
|
|
self.min_node = node
|
|
else:
|
|
self.min_node.add_sibling(node)
|
|
if node.val < self.min_node.val:
|
|
self.min_node = node
|
|
self.size += 1
|
|
return node
|
|
|
|
def peek(self):
|
|
"""
|
|
Returns the minimum value without removing it.
|
|
|
|
Returns:
|
|
The minimum value in the heap.
|
|
|
|
Raises:
|
|
IndexError: If the heap is empty.
|
|
"""
|
|
if not self.min_node:
|
|
raise IndexError("Heap is empty")
|
|
return self.min_node.val
|
|
|
|
def merge_heaps(self, other):
|
|
"""
|
|
Merges another Fibonacci heap into this one.
|
|
|
|
Args:
|
|
other: Another FibonacciHeap instance to merge with this one.
|
|
"""
|
|
if not other.min_node:
|
|
return
|
|
if not self.min_node:
|
|
self.min_node = other.min_node
|
|
else:
|
|
# Merge root lists
|
|
self.min_node.right.left = other.min_node.left
|
|
other.min_node.left.right = self.min_node.right
|
|
self.min_node.right = other.min_node
|
|
other.min_node.left = self.min_node
|
|
|
|
if other.min_node.val < self.min_node.val:
|
|
self.min_node = other.min_node
|
|
|
|
self.size += other.size
|
|
|
|
def __link_trees(self, node1, node2):
|
|
"""
|
|
Links two trees of same degree.
|
|
|
|
Args:
|
|
node1: First tree's root node.
|
|
node2: Second tree's root node.
|
|
"""
|
|
node1.remove()
|
|
if node2.child:
|
|
node2.child.add_sibling(node1)
|
|
else:
|
|
node2.child = node1
|
|
node1.parent = node2
|
|
node2.degree += 1
|
|
node1.mark = False
|
|
|
|
def delete_min(self):
|
|
"""
|
|
Removes and returns the minimum value from the heap.
|
|
|
|
Returns:
|
|
The minimum value that was removed.
|
|
|
|
Raises:
|
|
IndexError: If the heap is empty.
|
|
"""
|
|
if not self.min_node:
|
|
raise IndexError("Heap is empty")
|
|
|
|
min_val = self.min_node.val
|
|
|
|
# Add all children to root list
|
|
if self.min_node.child:
|
|
curr = self.min_node.child
|
|
while True:
|
|
next_node = curr.right
|
|
curr.parent = None
|
|
curr.mark = False
|
|
self.min_node.add_sibling(curr)
|
|
if curr.right == self.min_node.child:
|
|
break
|
|
curr = next_node
|
|
|
|
# Remove minimum node
|
|
if self.min_node.right == self.min_node:
|
|
self.min_node = None
|
|
else:
|
|
self.min_node.remove()
|
|
self.min_node = self.min_node.right
|
|
self.__consolidate()
|
|
|
|
self.size -= 1
|
|
return min_val
|
|
|
|
def __consolidate(self):
|
|
"""
|
|
Consolidates the trees in the heap after a delete_min operation.
|
|
|
|
This is an internal method that maintains the heap's structure.
|
|
"""
|
|
max_degree = int(self.size ** 0.5) + 1
|
|
degree_table = [None] * max_degree
|
|
|
|
# Collect all roots
|
|
roots = []
|
|
curr = self.min_node
|
|
while True:
|
|
roots.append(curr)
|
|
curr = curr.right
|
|
if curr == self.min_node:
|
|
break
|
|
|
|
# Consolidate trees
|
|
for root in roots:
|
|
degree = root.degree
|
|
while degree_table[degree]:
|
|
other = degree_table[degree]
|
|
if root.val > other.val:
|
|
root, other = other, root
|
|
self.__link_trees(other, root)
|
|
degree_table[degree] = None
|
|
degree += 1
|
|
degree_table[degree] = root
|
|
|
|
# Find new minimum
|
|
self.min_node = None
|
|
for degree in range(max_degree):
|
|
if degree_table[degree]:
|
|
if not self.min_node:
|
|
self.min_node = degree_table[degree]
|
|
self.min_node.left = self.min_node
|
|
self.min_node.right = self.min_node
|
|
else:
|
|
self.min_node.add_sibling(degree_table[degree])
|
|
if degree_table[degree].val < self.min_node.val:
|
|
self.min_node = degree_table[degree]
|
|
|
|
def decrease_key(self, node, new_val):
|
|
"""
|
|
Decreases the value of a node.
|
|
|
|
Args:
|
|
node: The node whose value should be decreased.
|
|
new_val: The new value for the node.
|
|
|
|
Raises:
|
|
ValueError: If new value is greater than current value.
|
|
"""
|
|
if new_val > node.val:
|
|
raise ValueError("New value is greater than current value")
|
|
|
|
node.val = new_val
|
|
parent = node.parent
|
|
|
|
if parent and node.val < parent.val:
|
|
self.__cut(node, parent)
|
|
self.__cascading_cut(parent)
|
|
|
|
if node.val < self.min_node.val:
|
|
self.min_node = node
|
|
|
|
def __cut(self, node, parent):
|
|
"""
|
|
Cuts a node from its parent
|
|
|
|
Args:
|
|
node: Node to be cut.
|
|
parent: Parent of the node to be cut.
|
|
""""""
|
|
Performs cascading cut operation.
|
|
|
|
Args:
|
|
node: Starting node for cascading cut.
|
|
"""
|
|
|
|
parent.degree -= 1
|
|
if parent.child == node:
|
|
parent.child = node.right if node.right != node else None
|
|
node.remove()
|
|
node.left = node
|
|
node.right = node
|
|
node.parent = None
|
|
node.mark = False
|
|
self.min_node.add_sibling(node)
|
|
|
|
def __cascading_cut(self, node):
|
|
"""
|
|
Performs cascading cut operation.
|
|
|
|
Args:
|
|
node: Starting node for cascading cut.
|
|
"""
|
|
|
|
parent = node.parent
|
|
if parent:
|
|
if not node.mark:
|
|
node.mark = True
|
|
else:
|
|
self.__cut(node, parent)
|
|
self.__cascading_cut(parent)
|
|
|
|
def __str__(self):
|
|
"""
|
|
Returns a string representation of the heap.
|
|
|
|
Returns:
|
|
str: A string showing the heap structure.
|
|
"""
|
|
if not self.min_node:
|
|
return "Empty heap"
|
|
|
|
def print_tree(node, level=0):
|
|
result = []
|
|
curr = node
|
|
while True:
|
|
result.append("-" * level + str(curr.val))
|
|
if curr.child:
|
|
result.extend(print_tree(curr.child, level + 1))
|
|
curr = curr.right
|
|
if curr == node:
|
|
break
|
|
return result
|
|
|
|
return "\n".join(print_tree(self.min_node))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
doctest.testmod()
|