Python/matrix/inverse_of_matrix.py
Maxim Smolskiy a0b0f414ae
Add Project Euler problem 116 solution 1 (#6305)
* Add solution

* updating DIRECTORY.md

* Fix pre-commit

* updating DIRECTORY.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: John Law <johnlaw.po@gmail.com>
2022-09-24 18:04:00 +01:00

49 lines
2.0 KiB
Python

from __future__ import annotations
from decimal import Decimal
def inverse_of_matrix(matrix: list[list[float]]) -> list[list[float]]:
"""
A matrix multiplied with its inverse gives the identity matrix.
This function finds the inverse of a 2x2 matrix.
If the determinant of a matrix is 0, its inverse does not exist.
Sources for fixing inaccurate float arithmetic:
https://stackoverflow.com/questions/6563058/how-do-i-use-accurate-float-arithmetic-in-python
https://docs.python.org/3/library/decimal.html
>>> inverse_of_matrix([[2, 5], [2, 0]])
[[0.0, 0.5], [0.2, -0.2]]
>>> inverse_of_matrix([[2.5, 5], [1, 2]])
Traceback (most recent call last):
...
ValueError: This matrix has no inverse.
>>> inverse_of_matrix([[12, -16], [-9, 0]])
[[0.0, -0.1111111111111111], [-0.0625, -0.08333333333333333]]
>>> inverse_of_matrix([[12, 3], [16, 8]])
[[0.16666666666666666, -0.0625], [-0.3333333333333333, 0.25]]
>>> inverse_of_matrix([[10, 5], [3, 2.5]])
[[0.25, -0.5], [-0.3, 1.0]]
"""
D = Decimal # An abbreviation for conciseness
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(matrix) != 2 or len(matrix[0]) != 2 or len(matrix[1]) != 2:
raise ValueError("Please provide a matrix of size 2x2.")
# Calculate the determinant of the matrix
determinant = D(matrix[0][0]) * D(matrix[1][1]) - D(matrix[1][0]) * D(matrix[0][1])
if determinant == 0:
raise ValueError("This matrix has no inverse.")
# Creates a copy of the matrix with swapped positions of the elements
swapped_matrix = [[0.0, 0.0], [0.0, 0.0]]
swapped_matrix[0][0], swapped_matrix[1][1] = matrix[1][1], matrix[0][0]
swapped_matrix[1][0], swapped_matrix[0][1] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [[float(D(n) / determinant) or 0.0 for n in row] for row in swapped_matrix]