Python/physics/orbital_transfer_work.py
S Sajeev 6e4d1b3765
Physics orbital_transfer_work (#12728)
* Added iterative solution for power calculation

* Added iterative solution for power calculation

* Added iterative solution for power calculation

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Added iterative solution for power calculation fixes #12709

* Added iterative solution for power calculation  FIXES NUMBER 12709

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Escape velocity is the minimum speed an object must have to break free from a celestial body's gravitational pull without further propulsion.
Takes input as the Mass of the Celestial body (M) and Radius fron the center of mass (M)

* Fix: added header comment to escape_velocity.py

* Trigger re-PR with a minor change

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix: resolve Ruff linter errors and add Wikipedia reference

* Add: work done calculation for orbital transfer between orbits

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update escape_velocity.py

* Delete maths/power_using_iteration.py

* Update and rename workdone.py to orbital_transfer_work.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2025-05-13 11:14:05 +02:00

74 lines
2.5 KiB
Python

def orbital_transfer_work(
mass_central: float, mass_object: float, r_initial: float, r_final: float
) -> str:
"""
Calculates the work required to move an object from one orbit to another in a
gravitational field based on the change in total mechanical energy.
The formula used is:
W = (G * M * m / 2) * (1/r_initial - 1/r_final)
where:
W = work done (Joules)
G = gravitational constant (6.67430 * 10^-11 m^3 kg^-1 s^-2)
M = mass of the central body (kg)
m = mass of the orbiting object (kg)
r_initial = initial orbit radius (m)
r_final = final orbit radius (m)
Args:
mass_central (float): Mass of the central body (kg)
mass_object (float): Mass of the object being moved (kg)
r_initial (float): Initial orbital radius (m)
r_final (float): Final orbital radius (m)
Returns:
str: Work done in Joules as a string in scientific notation (3 decimals)
Examples:
>>> orbital_transfer_work(5.972e24, 1000, 6.371e6, 7e6)
'2.811e+09'
>>> orbital_transfer_work(5.972e24, 500, 7e6, 6.371e6)
'-1.405e+09'
>>> orbital_transfer_work(1.989e30, 1000, 1.5e11, 2.28e11)
'1.514e+11'
"""
gravitational_constant = 6.67430e-11
if r_initial <= 0 or r_final <= 0:
raise ValueError("Orbital radii must be greater than zero.")
work = (gravitational_constant * mass_central * mass_object / 2) * (
1 / r_initial - 1 / r_final
)
return f"{work:.3e}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print("Orbital transfer work calculator\n")
try:
M = float(input("Enter mass of central body (kg): ").strip())
if M <= 0:
r1 = float(input("Enter initial orbit radius (m): ").strip())
if r1 <= 0:
raise ValueError("Initial orbit radius must be greater than zero.")
r2 = float(input("Enter final orbit radius (m): ").strip())
if r2 <= 0:
raise ValueError("Final orbit radius must be greater than zero.")
m = float(input("Enter mass of orbiting object (kg): ").strip())
if m <= 0:
raise ValueError("Mass of the orbiting object must be greater than zero.")
r1 = float(input("Enter initial orbit radius (m): ").strip())
r2 = float(input("Enter final orbit radius (m): ").strip())
result = orbital_transfer_work(M, m, r1, r2)
print(f"Work done in orbital transfer: {result} Joules")
except ValueError as e:
print(f"Input error: {e}")