Python/maths/euler_method.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

48 lines
1.2 KiB
Python

from collections.abc import Callable
import numpy as np
def explicit_euler(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
) -> np.ndarray:
"""Calculate numeric solution at each step to an ODE using Euler's Method
For reference to Euler's method refer to https://en.wikipedia.org/wiki/Euler_method.
Args:
ode_func (Callable): The ordinary differential equation
as a function of x and y.
y0 (float): The initial value for y.
x0 (float): The initial value for x.
step_size (float): The increment value for x.
x_end (float): The final value of x to be calculated.
Returns:
np.ndarray: Solution of y for every step in x.
>>> # the exact solution is math.exp(x)
>>> def f(x, y):
... return y
>>> y0 = 1
>>> y = explicit_euler(f, y0, 0.0, 0.01, 5)
>>> y[-1]
144.77277243257308
"""
n = int(np.ceil((x_end - x0) / step_size))
y = np.zeros((n + 1,))
y[0] = y0
x = x0
for k in range(n):
y[k + 1] = y[k] + step_size * ode_func(x, y[k])
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()