Python/graphs/edmonds_blossom_algorithm.py
2024-10-14 21:12:19 +05:30

209 lines
8.6 KiB
Python

from collections import deque
class BlossomAuxData:
"""Class to hold auxiliary data during the blossom algorithm's execution."""
def __init__(self, queue: deque, parent: list[int], base: list[int],
in_blossom: list[bool], match: list[int], in_queue: list[bool]):
self.queue = queue
self.parent = parent
self.base = base
self.in_blossom = in_blossom
self.match = match
self.in_queue = in_queue
class BlossomData:
"""Class to encapsulate data related to a blossom in the graph."""
def __init__(self, aux_data: BlossomAuxData, u: int, v: int, lca: int):
self.aux_data = aux_data
self.u = u
self.v = v
self.lca = lca
class EdmondsBlossomAlgorithm:
UNMATCHED = -1 # Constant to represent unmatched vertices
@staticmethod
def maximum_matching(edges: list[list[int]], vertex_count: int) -> list[list[int]]:
"""
Finds the maximum matching in a graph using the Edmonds Blossom Algorithm.
Args:
edges: A list of edges represented as pairs of vertices.
vertex_count: The total number of vertices in the graph.
Returns:
A list of matched pairs in the form of a list of lists.
"""
# Create an adjacency list for the graph
graph = [[] for _ in range(vertex_count)]
# Populate the graph with the edges
for edge in edges:
u, v = edge
graph[u].append(v)
graph[v].append(u)
# All vertices are initially unmatched
match = [EdmondsBlossomAlgorithm.UNMATCHED] * vertex_count
parent = [EdmondsBlossomAlgorithm.UNMATCHED] * vertex_count
base = list(range(vertex_count)) # Each vertex is its own base initially
in_blossom = [False] * vertex_count
in_queue = [False] * vertex_count # Tracks vertices in the BFS queue
# Main logic for finding maximum matching
for u in range(vertex_count):
# Only consider unmatched vertices
if match[u] == EdmondsBlossomAlgorithm.UNMATCHED:
# BFS initialization
parent = [EdmondsBlossomAlgorithm.UNMATCHED] * vertex_count
base = list(range(vertex_count))
in_blossom = [False] * vertex_count
in_queue = [False] * vertex_count
queue = deque([u]) # Start BFS from the unmatched vertex
in_queue[u] = True
augmenting_path_found = False
# BFS to find augmenting paths
while queue and not augmenting_path_found:
current = queue.popleft() # Get the current vertex
for y in graph[current]: # Explore adjacent vertices
# Skip if we're looking at the current match
if match[current] == y:
continue
if base[current] == base[y]: # Avoid self-loops
continue
if parent[y] == EdmondsBlossomAlgorithm.UNMATCHED:
# Case 1: y is unmatched; we've found an augmenting path
if match[y] == EdmondsBlossomAlgorithm.UNMATCHED:
parent[y] = current # Update the parent
augmenting_path_found = True
# Augment along this path
EdmondsBlossomAlgorithm.update_matching(match,
parent,
y)
break
# Case 2: y is matched; add y's match to the queue
z = match[y]
parent[y] = current
parent[z] = y
if not in_queue[z]: # If z is not already in the queue
queue.append(z)
in_queue[z] = True
else:
# Case 3: Both current and y have a parent;
# check for a cycle/blossom
base_u = EdmondsBlossomAlgorithm.find_base(base,
parent,
current,
y)
if base_u != EdmondsBlossomAlgorithm.UNMATCHED:
EdmondsBlossomAlgorithm.contract_blossom(BlossomData(
BlossomAuxData(queue, parent,
base, in_blossom,
match, in_queue),
current, y, base_u))
# Create result list of matched pairs
matching_result = []
for v in range(vertex_count):
# Ensure pairs are unique
if match[v] != EdmondsBlossomAlgorithm.UNMATCHED and v < match[v]:
matching_result.append([v, match[v]])
return matching_result
@staticmethod
def update_matching(match: list[int], parent: list[int], u: int):
"""
Updates the matching based on the augmenting path found.
Args:
match: The current match list.
parent: The parent list from BFS traversal.
u: The vertex where the augmenting path ends.
"""
while u != EdmondsBlossomAlgorithm.UNMATCHED:
v = parent[u] # Get the parent vertex
next_match = match[v] # Store the next match
match[v] = u # Update match for v
match[u] = v # Update match for u
u = next_match # Move to the next vertex
@staticmethod
def find_base(base: list[int], parent: list[int], u: int, v: int) -> int:
"""
Finds the base of the blossom.
Args:
base: The base array for each vertex.
parent: The parent array from BFS.
u: One endpoint of the blossom.
v: The other endpoint of the blossom.
Returns:
The lowest common ancestor of u and v in the blossom.
"""
visited = [False] * len(base)
# Mark ancestors of u
current_u = u
while True:
current_u = base[current_u]
visited[current_u] = True # Mark this base as visited
if parent[current_u] == EdmondsBlossomAlgorithm.UNMATCHED:
break
current_u = parent[current_u]
# Find the common ancestor of v
current_v = v
while True:
current_v = base[current_v]
if visited[current_v]: # Check if we've already visited this base
return current_v
current_v = parent[current_v]
@staticmethod
def contract_blossom(blossom_data: BlossomData):
"""
Contracts a blossom found during the matching process.
Args:
blossom_data: The data related to the blossom to be contracted.
"""
# Mark vertices in the blossom
for x in range(blossom_data.u,
blossom_data.aux_data.base[blossom_data.u] != blossom_data.lca):
base_x = blossom_data.aux_data.base[x]
match_base_x = blossom_data.aux_data.base[blossom_data.aux_data.match[x]]
# Mark the base as in a blossom
blossom_data.aux_data.in_blossom[base_x] = True
blossom_data.aux_data.in_blossom[match_base_x] = True
for x in range(blossom_data.v,
blossom_data.aux_data.base[blossom_data.v] != blossom_data.lca):
base_x = blossom_data.aux_data.base[x]
match_base_x = blossom_data.aux_data.base[blossom_data.aux_data.match[x]]
# Mark the base as in a blossom
blossom_data.aux_data.in_blossom[base_x] = True
blossom_data.aux_data.in_blossom[match_base_x] = True
# Update the base for all marked vertices
for i in range(len(blossom_data.aux_data.base)):
if blossom_data.aux_data.in_blossom[blossom_data.aux_data.base[i]]:
# Contract to the lowest common ancestor
blossom_data.aux_data.base[i] = blossom_data.lca
if not blossom_data.aux_data.in_queue[i]:
# Add to queue if not already present
blossom_data.aux_data.queue.append(i)
blossom_data.aux_data.in_queue[i] = True