mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
77 lines
1.9 KiB
Python
77 lines
1.9 KiB
Python
"""
|
|
This is a pure python implementation of the merge sort algorithm
|
|
|
|
For doctests run following command:
|
|
python -m doctest -v merge_sort.py
|
|
or
|
|
python3 -m doctest -v merge_sort.py
|
|
|
|
For manual testing run:
|
|
python merge_sort.py
|
|
"""
|
|
from __future__ import print_function
|
|
|
|
|
|
def merge_sort(collection):
|
|
"""Pure implementation of the merge sort algorithm in Python
|
|
|
|
:param collection: some mutable ordered collection with heterogeneous
|
|
comparable items inside
|
|
:return: the same collection ordered by ascending
|
|
|
|
Examples:
|
|
>>> merge_sort([0, 5, 3, 2, 2])
|
|
[0, 2, 2, 3, 5]
|
|
|
|
>>> merge_sort([])
|
|
[]
|
|
|
|
>>> merge_sort([-2, -5, -45])
|
|
[-45, -5, -2]
|
|
"""
|
|
length = len(collection)
|
|
if length > 1:
|
|
midpoint = length // 2
|
|
left_half = merge_sort(collection[:midpoint])
|
|
right_half = merge_sort(collection[midpoint:])
|
|
i = 0
|
|
j = 0
|
|
k = 0
|
|
left_length = len(left_half)
|
|
right_length = len(right_half)
|
|
while i < left_length and j < right_length:
|
|
if left_half[i] < right_half[j]:
|
|
collection[k] = left_half[i]
|
|
i += 1
|
|
else:
|
|
collection[k] = right_half[j]
|
|
j += 1
|
|
k += 1
|
|
|
|
while i < left_length:
|
|
collection[k] = left_half[i]
|
|
i += 1
|
|
k += 1
|
|
|
|
while j < right_length:
|
|
collection[k] = right_half[j]
|
|
j += 1
|
|
k += 1
|
|
|
|
return collection
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import sys
|
|
|
|
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
|
# otherwise 2.x's input builtin function is too "smart"
|
|
if sys.version_info.major < 3:
|
|
input_function = raw_input
|
|
else:
|
|
input_function = input
|
|
|
|
user_input = input_function('Enter numbers separated by a comma:\n')
|
|
unsorted = [int(item) for item in user_input.split(',')]
|
|
print(merge_sort(unsorted))
|