mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
bcfca67faa
* [mypy] fix type annotations for problem003/sol1 and problem003/sol3 * [mypy] fix type annotations for project euler problem007/sol2 * [mypy] fix type annotations for project euler problem008/sol2 * [mypy] fix type annotations for project euler problem009/sol1 * [mypy] fix type annotations for project euler problem014/sol1 * [mypy] fix type annotations for project euler problem 025/sol2 * [mypy] fix type annotations for project euler problem026/sol1.py * [mypy] fix type annotations for project euler problem037/sol1 * [mypy] fix type annotations for project euler problem044/sol1 * [mypy] fix type annotations for project euler problem046/sol1 * [mypy] fix type annotations for project euler problem051/sol1 * [mypy] fix type annotations for project euler problem074/sol2 * [mypy] fix type annotations for project euler problem080/sol1 * [mypy] fix type annotations for project euler problem099/sol1 * [mypy] fix type annotations for project euler problem101/sol1 * [mypy] fix type annotations for project euler problem188/sol1 * [mypy] fix type annotations for project euler problem191/sol1 * [mypy] fix type annotations for project euler problem207/sol1 * [mypy] fix type annotations for project euler problem551/sol1
99 lines
2.6 KiB
Python
99 lines
2.6 KiB
Python
"""
|
|
The number 3797 has an interesting property. Being prime itself, it is possible
|
|
to continuously remove digits from left to right, and remain prime at each stage:
|
|
3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
|
|
|
|
Find the sum of the only eleven primes that are both truncatable from left to right
|
|
and right to left.
|
|
|
|
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
seive = [True] * 1000001
|
|
seive[1] = False
|
|
i = 2
|
|
while i * i <= 1000000:
|
|
if seive[i]:
|
|
for j in range(i * i, 1000001, i):
|
|
seive[j] = False
|
|
i += 1
|
|
|
|
|
|
def is_prime(n: int) -> bool:
|
|
"""
|
|
Returns True if n is prime,
|
|
False otherwise, for 1 <= n <= 1000000
|
|
>>> is_prime(87)
|
|
False
|
|
>>> is_prime(1)
|
|
False
|
|
>>> is_prime(25363)
|
|
False
|
|
"""
|
|
return seive[n]
|
|
|
|
|
|
def list_truncated_nums(n: int) -> list[int]:
|
|
"""
|
|
Returns a list of all left and right truncated numbers of n
|
|
>>> list_truncated_nums(927628)
|
|
[927628, 27628, 92762, 7628, 9276, 628, 927, 28, 92, 8, 9]
|
|
>>> list_truncated_nums(467)
|
|
[467, 67, 46, 7, 4]
|
|
>>> list_truncated_nums(58)
|
|
[58, 8, 5]
|
|
"""
|
|
str_num = str(n)
|
|
list_nums = [n]
|
|
for i in range(1, len(str_num)):
|
|
list_nums.append(int(str_num[i:]))
|
|
list_nums.append(int(str_num[:-i]))
|
|
return list_nums
|
|
|
|
|
|
def validate(n: int) -> bool:
|
|
"""
|
|
To optimize the approach, we will rule out the numbers above 1000,
|
|
whose first or last three digits are not prime
|
|
>>> validate(74679)
|
|
False
|
|
>>> validate(235693)
|
|
False
|
|
>>> validate(3797)
|
|
True
|
|
"""
|
|
if len(str(n)) > 3:
|
|
if not is_prime(int(str(n)[-3:])) or not is_prime(int(str(n)[:3])):
|
|
return False
|
|
return True
|
|
|
|
|
|
def compute_truncated_primes(count: int = 11) -> list[int]:
|
|
"""
|
|
Returns the list of truncated primes
|
|
>>> compute_truncated_primes(11)
|
|
[23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397]
|
|
"""
|
|
list_truncated_primes: list[int] = []
|
|
num = 13
|
|
while len(list_truncated_primes) != count:
|
|
if validate(num):
|
|
list_nums = list_truncated_nums(num)
|
|
if all(is_prime(i) for i in list_nums):
|
|
list_truncated_primes.append(num)
|
|
num += 2
|
|
return list_truncated_primes
|
|
|
|
|
|
def solution() -> int:
|
|
"""
|
|
Returns the sum of truncated primes
|
|
"""
|
|
return sum(compute_truncated_primes(11))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print(f"{sum(compute_truncated_primes(11)) = }")
|