Python/neural_network/bpnn.py
2018-10-19 07:48:28 -05:00

194 lines
5.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/python
# encoding=utf8
'''
A Framework of Back Propagation Neural NetworkBP model
Easy to use:
* add many layers as you want
* clearly see how the loss decreasing
Easy to expand:
* more activation functions
* more loss functions
* more optimization method
Author: Stephen Lee
Github : https://github.com/RiptideBo
Date: 2017.11.23
'''
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.exp(-1 * x))
class DenseLayer():
'''
Layers of BP neural network
'''
def __init__(self,units,activation=None,learning_rate=None,is_input_layer=False):
'''
common connected layer of bp network
:param units: numbers of neural units
:param activation: activation function
:param learning_rate: learning rate for paras
:param is_input_layer: whether it is input layer or not
'''
self.units = units
self.weight = None
self.bias = None
self.activation = activation
if learning_rate is None:
learning_rate = 0.3
self.learn_rate = learning_rate
self.is_input_layer = is_input_layer
def initializer(self,back_units):
self.weight = np.asmatrix(np.random.normal(0,0.5,(self.units,back_units)))
self.bias = np.asmatrix(np.random.normal(0,0.5,self.units)).T
if self.activation is None:
self.activation = sigmoid
def cal_gradient(self):
if self.activation == sigmoid:
gradient_mat = np.dot(self.output ,(1- self.output).T)
gradient_activation = np.diag(np.diag(gradient_mat))
else:
gradient_activation = 1
return gradient_activation
def forward_propagation(self,xdata):
self.xdata = xdata
if self.is_input_layer:
# input layer
self.wx_plus_b = xdata
self.output = xdata
return xdata
else:
self.wx_plus_b = np.dot(self.weight,self.xdata) - self.bias
self.output = self.activation(self.wx_plus_b)
return self.output
def back_propagation(self,gradient):
gradient_activation = self.cal_gradient() # i * i 维
gradient = np.asmatrix(np.dot(gradient.T,gradient_activation))
self._gradient_weight = np.asmatrix(self.xdata)
self._gradient_bias = -1
self._gradient_x = self.weight
self.gradient_weight = np.dot(gradient.T,self._gradient_weight.T)
self.gradient_bias = gradient * self._gradient_bias
self.gradient = np.dot(gradient,self._gradient_x).T
# ----------------------upgrade
# -----------the Negative gradient direction --------
self.weight = self.weight - self.learn_rate * self.gradient_weight
self.bias = self.bias - self.learn_rate * self.gradient_bias.T
return self.gradient
class BPNN():
'''
Back Propagation Neural Network model
'''
def __init__(self):
self.layers = []
self.train_mse = []
self.fig_loss = plt.figure()
self.ax_loss = self.fig_loss.add_subplot(1,1,1)
def add_layer(self,layer):
self.layers.append(layer)
def build(self):
for i,layer in enumerate(self.layers[:]):
if i < 1:
layer.is_input_layer = True
else:
layer.initializer(self.layers[i-1].units)
def summary(self):
for i,layer in enumerate(self.layers[:]):
print('------- layer %d -------'%i)
print('weight.shape ',np.shape(layer.weight))
print('bias.shape ',np.shape(layer.bias))
def train(self,xdata,ydata,train_round,accuracy):
self.train_round = train_round
self.accuracy = accuracy
self.ax_loss.hlines(self.accuracy, 0, self.train_round * 1.1)
x_shape = np.shape(xdata)
for round_i in range(train_round):
all_loss = 0
for row in range(x_shape[0]):
_xdata = np.asmatrix(xdata[row,:]).T
_ydata = np.asmatrix(ydata[row,:]).T
# forward propagation
for layer in self.layers:
_xdata = layer.forward_propagation(_xdata)
loss, gradient = self.cal_loss(_ydata, _xdata)
all_loss = all_loss + loss
# back propagation
# the input_layer does not upgrade
for layer in self.layers[:0:-1]:
gradient = layer.back_propagation(gradient)
mse = all_loss/x_shape[0]
self.train_mse.append(mse)
self.plot_loss()
if mse < self.accuracy:
print('----达到精度----')
return mse
def cal_loss(self,ydata,ydata_):
self.loss = np.sum(np.power((ydata - ydata_),2))
self.loss_gradient = 2 * (ydata_ - ydata)
# vector (shape is the same as _ydata.shape)
return self.loss,self.loss_gradient
def plot_loss(self):
if self.ax_loss.lines:
self.ax_loss.lines.remove(self.ax_loss.lines[0])
self.ax_loss.plot(self.train_mse, 'r-')
plt.ion()
plt.show()
plt.pause(0.1)
def example():
x = np.random.randn(10,10)
y = np.asarray([[0.8,0.4],[0.4,0.3],[0.34,0.45],[0.67,0.32],
[0.88,0.67],[0.78,0.77],[0.55,0.66],[0.55,0.43],[0.54,0.1],
[0.1,0.5]])
model = BPNN()
model.add_layer(DenseLayer(10))
model.add_layer(DenseLayer(20))
model.add_layer(DenseLayer(30))
model.add_layer(DenseLayer(2))
model.build()
model.summary()
model.train(xdata=x,ydata=y,train_round=100,accuracy=0.01)
if __name__ == '__main__':
example()