mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-05 09:57:01 +00:00
2104fa7aeb
* fixes #5434 * fixes broken solution * removes assert * removes assert * Apply suggestions from code review Co-authored-by: John Law <johnlaw.po@gmail.com> * Update project_euler/problem_003/sol1.py Co-authored-by: John Law <johnlaw.po@gmail.com>
92 lines
2.6 KiB
Python
92 lines
2.6 KiB
Python
"""
|
||
Project Euler Problem 27
|
||
https://projecteuler.net/problem=27
|
||
|
||
Problem Statement:
|
||
|
||
Euler discovered the remarkable quadratic formula:
|
||
n2 + n + 41
|
||
It turns out that the formula will produce 40 primes for the consecutive values
|
||
n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible
|
||
by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.
|
||
The incredible formula n2 − 79n + 1601 was discovered, which produces 80 primes
|
||
for the consecutive values n = 0 to 79. The product of the coefficients, −79 and
|
||
1601, is −126479.
|
||
Considering quadratics of the form:
|
||
n² + an + b, where |a| < 1000 and |b| < 1000
|
||
where |n| is the modulus/absolute value of ne.g. |11| = 11 and |−4| = 4
|
||
Find the product of the coefficients, a and b, for the quadratic expression that
|
||
produces the maximum number of primes for consecutive values of n, starting with
|
||
n = 0.
|
||
"""
|
||
|
||
import math
|
||
|
||
|
||
def is_prime(number: int) -> bool:
|
||
"""Checks to see if a number is a prime in O(sqrt(n)).
|
||
A number is prime if it has exactly two factors: 1 and itself.
|
||
Returns boolean representing primality of given number num (i.e., if the
|
||
result is true, then the number is indeed prime else it is not).
|
||
|
||
>>> is_prime(2)
|
||
True
|
||
>>> is_prime(3)
|
||
True
|
||
>>> is_prime(27)
|
||
False
|
||
>>> is_prime(2999)
|
||
True
|
||
>>> is_prime(0)
|
||
False
|
||
>>> is_prime(1)
|
||
False
|
||
>>> is_prime(-10)
|
||
False
|
||
"""
|
||
|
||
if 1 < number < 4:
|
||
# 2 and 3 are primes
|
||
return True
|
||
elif number < 2 or number % 2 == 0 or number % 3 == 0:
|
||
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
|
||
return False
|
||
|
||
# All primes number are in format of 6k +/- 1
|
||
for i in range(5, int(math.sqrt(number) + 1), 6):
|
||
if number % i == 0 or number % (i + 2) == 0:
|
||
return False
|
||
return True
|
||
|
||
|
||
def solution(a_limit: int = 1000, b_limit: int = 1000) -> int:
|
||
"""
|
||
>>> solution(1000, 1000)
|
||
-59231
|
||
>>> solution(200, 1000)
|
||
-59231
|
||
>>> solution(200, 200)
|
||
-4925
|
||
>>> solution(-1000, 1000)
|
||
0
|
||
>>> solution(-1000, -1000)
|
||
0
|
||
"""
|
||
longest = [0, 0, 0] # length, a, b
|
||
for a in range((a_limit * -1) + 1, a_limit):
|
||
for b in range(2, b_limit):
|
||
if is_prime(b):
|
||
count = 0
|
||
n = 0
|
||
while is_prime((n**2) + (a * n) + b):
|
||
count += 1
|
||
n += 1
|
||
if count > longest[0]:
|
||
longest = [count, a, b]
|
||
ans = longest[1] * longest[2]
|
||
return ans
|
||
|
||
|
||
if __name__ == "__main__":
|
||
print(solution(1000, 1000))
|