Python/maths/special_numbers/pronic_number.py

56 lines
1.3 KiB
Python

"""
== Pronic Number ==
A number n is said to be a Proic number if
there exists an integer m such that n = m * (m + 1)
Examples of Proic Numbers: 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110 ...
https://en.wikipedia.org/wiki/Pronic_number
"""
# Author : Akshay Dubey (https://github.com/itsAkshayDubey)
def is_pronic(number: int) -> bool:
"""
# doctest: +NORMALIZE_WHITESPACE
This functions takes an integer number as input.
returns True if the number is pronic.
>>> is_pronic(-1)
False
>>> is_pronic(0)
True
>>> is_pronic(2)
True
>>> is_pronic(5)
False
>>> is_pronic(6)
True
>>> is_pronic(8)
False
>>> is_pronic(30)
True
>>> is_pronic(32)
False
>>> is_pronic(2147441940)
True
>>> is_pronic(9223372033963249500)
True
>>> is_pronic(6.0)
Traceback (most recent call last):
...
TypeError: Input value of [number=6.0] must be an integer
"""
if not isinstance(number, int):
msg = f"Input value of [number={number}] must be an integer"
raise TypeError(msg)
if number < 0 or number % 2 == 1:
return False
number_sqrt = int(number**0.5)
return number == number_sqrt * (number_sqrt + 1)
if __name__ == "__main__":
import doctest
doctest.testmod()