mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 01:00:15 +00:00
035457f569
* created divide_and_conquer folder and added max_sub_array_sum.py under it (issue #817) * additional file in divide_and_conqure (closest pair of points)
76 lines
2.0 KiB
Python
76 lines
2.0 KiB
Python
"""
|
|
Given a array of length n, max_subarray_sum() finds
|
|
the maximum of sum of contiguous sub-array using divide and conquer method.
|
|
|
|
Time complexity : O(n log n)
|
|
|
|
Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION
|
|
(section : 4, sub-section : 4.1, page : 70)
|
|
|
|
"""
|
|
|
|
|
|
def max_sum_from_start(array):
|
|
""" This function finds the maximum contiguous sum of array from 0 index
|
|
|
|
Parameters :
|
|
array (list[int]) : given array
|
|
|
|
Returns :
|
|
max_sum (int) : maximum contiguous sum of array from 0 index
|
|
|
|
"""
|
|
array_sum = 0
|
|
max_sum = float("-inf")
|
|
for num in array:
|
|
array_sum += num
|
|
if array_sum > max_sum:
|
|
max_sum = array_sum
|
|
return max_sum
|
|
|
|
|
|
def max_cross_array_sum(array, left, mid, right):
|
|
""" This function finds the maximum contiguous sum of left and right arrays
|
|
|
|
Parameters :
|
|
array, left, mid, right (list[int], int, int, int)
|
|
|
|
Returns :
|
|
(int) : maximum of sum of contiguous sum of left and right arrays
|
|
|
|
"""
|
|
|
|
max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1])
|
|
max_sum_of_right = max_sum_from_start(array[mid+1: right+1])
|
|
return max_sum_of_left + max_sum_of_right
|
|
|
|
|
|
def max_subarray_sum(array, left, right):
|
|
""" Maximum contiguous sub-array sum, using divide and conquer method
|
|
|
|
Parameters :
|
|
array, left, right (list[int], int, int) :
|
|
given array, current left index and current right index
|
|
|
|
Returns :
|
|
int : maximum of sum of contiguous sub-array
|
|
|
|
"""
|
|
|
|
# base case: array has only one element
|
|
if left == right:
|
|
return array[right]
|
|
|
|
# Recursion
|
|
mid = (left + right) // 2
|
|
left_half_sum = max_subarray_sum(array, left, mid)
|
|
right_half_sum = max_subarray_sum(array, mid + 1, right)
|
|
cross_sum = max_cross_array_sum(array, left, mid, right)
|
|
return max(left_half_sum, right_half_sum, cross_sum)
|
|
|
|
|
|
array = [-2, -5, 6, -2, -3, 1, 5, -6]
|
|
array_length = len(array)
|
|
print("Maximum sum of contiguous subarray:", max_subarray_sum(array, 0, array_length - 1))
|
|
|