mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-30 16:31:08 +00:00
64543faa98
* Make some ruff fixes * Undo manual fix * Undo manual fix * Updates from ruff=0.0.251
269 lines
8.8 KiB
Python
269 lines
8.8 KiB
Python
"""
|
|
Prim's (also known as Jarník's) algorithm is a greedy algorithm that finds a minimum
|
|
spanning tree for a weighted undirected graph. This means it finds a subset of the
|
|
edges that forms a tree that includes every vertex, where the total weight of all the
|
|
edges in the tree is minimized. The algorithm operates by building this tree one vertex
|
|
at a time, from an arbitrary starting vertex, at each step adding the cheapest possible
|
|
connection from the tree to another vertex.
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
from sys import maxsize
|
|
from typing import Generic, TypeVar
|
|
|
|
T = TypeVar("T")
|
|
|
|
|
|
def get_parent_position(position: int) -> int:
|
|
"""
|
|
heap helper function get the position of the parent of the current node
|
|
|
|
>>> get_parent_position(1)
|
|
0
|
|
>>> get_parent_position(2)
|
|
0
|
|
"""
|
|
return (position - 1) // 2
|
|
|
|
|
|
def get_child_left_position(position: int) -> int:
|
|
"""
|
|
heap helper function get the position of the left child of the current node
|
|
|
|
>>> get_child_left_position(0)
|
|
1
|
|
"""
|
|
return (2 * position) + 1
|
|
|
|
|
|
def get_child_right_position(position: int) -> int:
|
|
"""
|
|
heap helper function get the position of the right child of the current node
|
|
|
|
>>> get_child_right_position(0)
|
|
2
|
|
"""
|
|
return (2 * position) + 2
|
|
|
|
|
|
class MinPriorityQueue(Generic[T]):
|
|
"""
|
|
Minimum Priority Queue Class
|
|
|
|
Functions:
|
|
is_empty: function to check if the priority queue is empty
|
|
push: function to add an element with given priority to the queue
|
|
extract_min: function to remove and return the element with lowest weight (highest
|
|
priority)
|
|
update_key: function to update the weight of the given key
|
|
_bubble_up: helper function to place a node at the proper position (upward
|
|
movement)
|
|
_bubble_down: helper function to place a node at the proper position (downward
|
|
movement)
|
|
_swap_nodes: helper function to swap the nodes at the given positions
|
|
|
|
>>> queue = MinPriorityQueue()
|
|
|
|
>>> queue.push(1, 1000)
|
|
>>> queue.push(2, 100)
|
|
>>> queue.push(3, 4000)
|
|
>>> queue.push(4, 3000)
|
|
|
|
>>> queue.extract_min()
|
|
2
|
|
|
|
>>> queue.update_key(4, 50)
|
|
|
|
>>> queue.extract_min()
|
|
4
|
|
>>> queue.extract_min()
|
|
1
|
|
>>> queue.extract_min()
|
|
3
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self.heap: list[tuple[T, int]] = []
|
|
self.position_map: dict[T, int] = {}
|
|
self.elements: int = 0
|
|
|
|
def __len__(self) -> int:
|
|
return self.elements
|
|
|
|
def __repr__(self) -> str:
|
|
return str(self.heap)
|
|
|
|
def is_empty(self) -> bool:
|
|
# Check if the priority queue is empty
|
|
return self.elements == 0
|
|
|
|
def push(self, elem: T, weight: int) -> None:
|
|
# Add an element with given priority to the queue
|
|
self.heap.append((elem, weight))
|
|
self.position_map[elem] = self.elements
|
|
self.elements += 1
|
|
self._bubble_up(elem)
|
|
|
|
def extract_min(self) -> T:
|
|
# Remove and return the element with lowest weight (highest priority)
|
|
if self.elements > 1:
|
|
self._swap_nodes(0, self.elements - 1)
|
|
elem, _ = self.heap.pop()
|
|
del self.position_map[elem]
|
|
self.elements -= 1
|
|
if self.elements > 0:
|
|
bubble_down_elem, _ = self.heap[0]
|
|
self._bubble_down(bubble_down_elem)
|
|
return elem
|
|
|
|
def update_key(self, elem: T, weight: int) -> None:
|
|
# Update the weight of the given key
|
|
position = self.position_map[elem]
|
|
self.heap[position] = (elem, weight)
|
|
if position > 0:
|
|
parent_position = get_parent_position(position)
|
|
_, parent_weight = self.heap[parent_position]
|
|
if parent_weight > weight:
|
|
self._bubble_up(elem)
|
|
else:
|
|
self._bubble_down(elem)
|
|
else:
|
|
self._bubble_down(elem)
|
|
|
|
def _bubble_up(self, elem: T) -> None:
|
|
# Place a node at the proper position (upward movement) [to be used internally
|
|
# only]
|
|
curr_pos = self.position_map[elem]
|
|
if curr_pos == 0:
|
|
return None
|
|
parent_position = get_parent_position(curr_pos)
|
|
_, weight = self.heap[curr_pos]
|
|
_, parent_weight = self.heap[parent_position]
|
|
if parent_weight > weight:
|
|
self._swap_nodes(parent_position, curr_pos)
|
|
return self._bubble_up(elem)
|
|
return None
|
|
|
|
def _bubble_down(self, elem: T) -> None:
|
|
# Place a node at the proper position (downward movement) [to be used
|
|
# internally only]
|
|
curr_pos = self.position_map[elem]
|
|
_, weight = self.heap[curr_pos]
|
|
child_left_position = get_child_left_position(curr_pos)
|
|
child_right_position = get_child_right_position(curr_pos)
|
|
if child_left_position < self.elements and child_right_position < self.elements:
|
|
_, child_left_weight = self.heap[child_left_position]
|
|
_, child_right_weight = self.heap[child_right_position]
|
|
if child_right_weight < child_left_weight and child_right_weight < weight:
|
|
self._swap_nodes(child_right_position, curr_pos)
|
|
return self._bubble_down(elem)
|
|
if child_left_position < self.elements:
|
|
_, child_left_weight = self.heap[child_left_position]
|
|
if child_left_weight < weight:
|
|
self._swap_nodes(child_left_position, curr_pos)
|
|
return self._bubble_down(elem)
|
|
else:
|
|
return None
|
|
if child_right_position < self.elements:
|
|
_, child_right_weight = self.heap[child_right_position]
|
|
if child_right_weight < weight:
|
|
self._swap_nodes(child_right_position, curr_pos)
|
|
return self._bubble_down(elem)
|
|
return None
|
|
|
|
def _swap_nodes(self, node1_pos: int, node2_pos: int) -> None:
|
|
# Swap the nodes at the given positions
|
|
node1_elem = self.heap[node1_pos][0]
|
|
node2_elem = self.heap[node2_pos][0]
|
|
self.heap[node1_pos], self.heap[node2_pos] = (
|
|
self.heap[node2_pos],
|
|
self.heap[node1_pos],
|
|
)
|
|
self.position_map[node1_elem] = node2_pos
|
|
self.position_map[node2_elem] = node1_pos
|
|
|
|
|
|
class GraphUndirectedWeighted(Generic[T]):
|
|
"""
|
|
Graph Undirected Weighted Class
|
|
|
|
Functions:
|
|
add_node: function to add a node in the graph
|
|
add_edge: function to add an edge between 2 nodes in the graph
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self.connections: dict[T, dict[T, int]] = {}
|
|
self.nodes: int = 0
|
|
|
|
def __repr__(self) -> str:
|
|
return str(self.connections)
|
|
|
|
def __len__(self) -> int:
|
|
return self.nodes
|
|
|
|
def add_node(self, node: T) -> None:
|
|
# Add a node in the graph if it is not in the graph
|
|
if node not in self.connections:
|
|
self.connections[node] = {}
|
|
self.nodes += 1
|
|
|
|
def add_edge(self, node1: T, node2: T, weight: int) -> None:
|
|
# Add an edge between 2 nodes in the graph
|
|
self.add_node(node1)
|
|
self.add_node(node2)
|
|
self.connections[node1][node2] = weight
|
|
self.connections[node2][node1] = weight
|
|
|
|
|
|
def prims_algo(
|
|
graph: GraphUndirectedWeighted[T],
|
|
) -> tuple[dict[T, int], dict[T, T | None]]:
|
|
"""
|
|
>>> graph = GraphUndirectedWeighted()
|
|
|
|
>>> graph.add_edge("a", "b", 3)
|
|
>>> graph.add_edge("b", "c", 10)
|
|
>>> graph.add_edge("c", "d", 5)
|
|
>>> graph.add_edge("a", "c", 15)
|
|
>>> graph.add_edge("b", "d", 100)
|
|
|
|
>>> dist, parent = prims_algo(graph)
|
|
|
|
>>> abs(dist["a"] - dist["b"])
|
|
3
|
|
>>> abs(dist["d"] - dist["b"])
|
|
15
|
|
>>> abs(dist["a"] - dist["c"])
|
|
13
|
|
"""
|
|
# prim's algorithm for minimum spanning tree
|
|
dist: dict[T, int] = {node: maxsize for node in graph.connections}
|
|
parent: dict[T, T | None] = {node: None for node in graph.connections}
|
|
|
|
priority_queue: MinPriorityQueue[T] = MinPriorityQueue()
|
|
for node, weight in dist.items():
|
|
priority_queue.push(node, weight)
|
|
|
|
if priority_queue.is_empty():
|
|
return dist, parent
|
|
|
|
# initialization
|
|
node = priority_queue.extract_min()
|
|
dist[node] = 0
|
|
for neighbour in graph.connections[node]:
|
|
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
|
|
dist[neighbour] = dist[node] + graph.connections[node][neighbour]
|
|
priority_queue.update_key(neighbour, dist[neighbour])
|
|
parent[neighbour] = node
|
|
|
|
# running prim's algorithm
|
|
while not priority_queue.is_empty():
|
|
node = priority_queue.extract_min()
|
|
for neighbour in graph.connections[node]:
|
|
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
|
|
dist[neighbour] = dist[node] + graph.connections[node][neighbour]
|
|
priority_queue.update_key(neighbour, dist[neighbour])
|
|
parent[neighbour] = node
|
|
return dist, parent
|