mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-05 09:57:01 +00:00
0b440285e8
* Replacing the generator with numpy vector operations from lu_decomposition.
* Revert "Replacing the generator with numpy vector operations from lu_decomposition."
This reverts commit ad217c6616
.
* Removes the warning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation
87 lines
2.5 KiB
Python
87 lines
2.5 KiB
Python
"""
|
|
Gaussian elimination method for solving a system of linear equations.
|
|
Gaussian elimination - https://en.wikipedia.org/wiki/Gaussian_elimination
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
from numpy import float64
|
|
from numpy.typing import NDArray
|
|
|
|
|
|
def retroactive_resolution(
|
|
coefficients: NDArray[float64], vector: NDArray[float64]
|
|
) -> NDArray[float64]:
|
|
"""
|
|
This function performs a retroactive linear system resolution
|
|
for triangular matrix
|
|
|
|
Examples:
|
|
2x1 + 2x2 - 1x3 = 5 2x1 + 2x2 = -1
|
|
0x1 - 2x2 - 1x3 = -7 0x1 - 2x2 = -1
|
|
0x1 + 0x2 + 5x3 = 15
|
|
>>> gaussian_elimination([[2, 2, -1], [0, -2, -1], [0, 0, 5]], [[5], [-7], [15]])
|
|
array([[2.],
|
|
[2.],
|
|
[3.]])
|
|
>>> gaussian_elimination([[2, 2], [0, -2]], [[-1], [-1]])
|
|
array([[-1. ],
|
|
[ 0.5]])
|
|
"""
|
|
|
|
rows, columns = np.shape(coefficients)
|
|
|
|
x: NDArray[float64] = np.zeros((rows, 1), dtype=float)
|
|
for row in reversed(range(rows)):
|
|
total = np.dot(coefficients[row, row + 1 :], x[row + 1 :])
|
|
x[row, 0] = (vector[row][0] - total[0]) / coefficients[row, row]
|
|
|
|
return x
|
|
|
|
|
|
def gaussian_elimination(
|
|
coefficients: NDArray[float64], vector: NDArray[float64]
|
|
) -> NDArray[float64]:
|
|
"""
|
|
This function performs Gaussian elimination method
|
|
|
|
Examples:
|
|
1x1 - 4x2 - 2x3 = -2 1x1 + 2x2 = 5
|
|
5x1 + 2x2 - 2x3 = -3 5x1 + 2x2 = 5
|
|
1x1 - 1x2 + 0x3 = 4
|
|
>>> gaussian_elimination([[1, -4, -2], [5, 2, -2], [1, -1, 0]], [[-2], [-3], [4]])
|
|
array([[ 2.3 ],
|
|
[-1.7 ],
|
|
[ 5.55]])
|
|
>>> gaussian_elimination([[1, 2], [5, 2]], [[5], [5]])
|
|
array([[0. ],
|
|
[2.5]])
|
|
"""
|
|
# coefficients must to be a square matrix so we need to check first
|
|
rows, columns = np.shape(coefficients)
|
|
if rows != columns:
|
|
return np.array((), dtype=float)
|
|
|
|
# augmented matrix
|
|
augmented_mat: NDArray[float64] = np.concatenate((coefficients, vector), axis=1)
|
|
augmented_mat = augmented_mat.astype("float64")
|
|
|
|
# scale the matrix leaving it triangular
|
|
for row in range(rows - 1):
|
|
pivot = augmented_mat[row, row]
|
|
for col in range(row + 1, columns):
|
|
factor = augmented_mat[col, row] / pivot
|
|
augmented_mat[col, :] -= factor * augmented_mat[row, :]
|
|
|
|
x = retroactive_resolution(
|
|
augmented_mat[:, 0:columns], augmented_mat[:, columns : columns + 1]
|
|
)
|
|
|
|
return x
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|