mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
421ace81ed
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.0.285 → v0.0.286](https://github.com/astral-sh/ruff-pre-commit/compare/v0.0.285...v0.0.286) - [github.com/tox-dev/pyproject-fmt: 0.13.1 → 1.1.0](https://github.com/tox-dev/pyproject-fmt/compare/0.13.1...1.1.0) * updating DIRECTORY.md * Fis ruff rules PIE808,PLR1714 --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
295 lines
9.3 KiB
Python
295 lines
9.3 KiB
Python
# Author: João Gustavo A. Amorim & Gabriel Kunz
|
|
# Author email: joaogustavoamorim@gmail.com and gabriel-kunz@uergs.edu.br
|
|
# Coding date: apr 2019
|
|
# Black: True
|
|
|
|
"""
|
|
* This code implement the Hamming code:
|
|
https://en.wikipedia.org/wiki/Hamming_code - In telecommunication,
|
|
Hamming codes are a family of linear error-correcting codes. Hamming
|
|
codes can detect up to two-bit errors or correct one-bit errors
|
|
without detection of uncorrected errors. By contrast, the simple
|
|
parity code cannot correct errors, and can detect only an odd number
|
|
of bits in error. Hamming codes are perfect codes, that is, they
|
|
achieve the highest possible rate for codes with their block length
|
|
and minimum distance of three.
|
|
|
|
* the implemented code consists of:
|
|
* a function responsible for encoding the message (emitterConverter)
|
|
* return the encoded message
|
|
* a function responsible for decoding the message (receptorConverter)
|
|
* return the decoded message and a ack of data integrity
|
|
|
|
* how to use:
|
|
to be used you must declare how many parity bits (sizePari)
|
|
you want to include in the message.
|
|
it is desired (for test purposes) to select a bit to be set
|
|
as an error. This serves to check whether the code is working correctly.
|
|
Lastly, the variable of the message/word that must be desired to be
|
|
encoded (text).
|
|
|
|
* how this work:
|
|
declaration of variables (sizePari, be, text)
|
|
|
|
converts the message/word (text) to binary using the
|
|
text_to_bits function
|
|
encodes the message using the rules of hamming encoding
|
|
decodes the message using the rules of hamming encoding
|
|
print the original message, the encoded message and the
|
|
decoded message
|
|
|
|
forces an error in the coded text variable
|
|
decodes the message that was forced the error
|
|
print the original message, the encoded message, the bit changed
|
|
message and the decoded message
|
|
"""
|
|
|
|
# Imports
|
|
import numpy as np
|
|
|
|
|
|
# Functions of binary conversion--------------------------------------
|
|
def text_to_bits(text, encoding="utf-8", errors="surrogatepass"):
|
|
"""
|
|
>>> text_to_bits("msg")
|
|
'011011010111001101100111'
|
|
"""
|
|
bits = bin(int.from_bytes(text.encode(encoding, errors), "big"))[2:]
|
|
return bits.zfill(8 * ((len(bits) + 7) // 8))
|
|
|
|
|
|
def text_from_bits(bits, encoding="utf-8", errors="surrogatepass"):
|
|
"""
|
|
>>> text_from_bits('011011010111001101100111')
|
|
'msg'
|
|
"""
|
|
n = int(bits, 2)
|
|
return n.to_bytes((n.bit_length() + 7) // 8, "big").decode(encoding, errors) or "\0"
|
|
|
|
|
|
# Functions of hamming code-------------------------------------------
|
|
def emitter_converter(size_par, data):
|
|
"""
|
|
:param size_par: how many parity bits the message must have
|
|
:param data: information bits
|
|
:return: message to be transmitted by unreliable medium
|
|
- bits of information merged with parity bits
|
|
|
|
>>> emitter_converter(4, "101010111111")
|
|
['1', '1', '1', '1', '0', '1', '0', '0', '1', '0', '1', '1', '1', '1', '1', '1']
|
|
"""
|
|
if size_par + len(data) <= 2**size_par - (len(data) - 1):
|
|
raise ValueError("size of parity don't match with size of data")
|
|
|
|
data_out = []
|
|
parity = []
|
|
bin_pos = [bin(x)[2:] for x in range(1, size_par + len(data) + 1)]
|
|
|
|
# sorted information data for the size of the output data
|
|
data_ord = []
|
|
# data position template + parity
|
|
data_out_gab = []
|
|
# parity bit counter
|
|
qtd_bp = 0
|
|
# counter position of data bits
|
|
cont_data = 0
|
|
|
|
for x in range(1, size_par + len(data) + 1):
|
|
# Performs a template of bit positions - who should be given,
|
|
# and who should be parity
|
|
if qtd_bp < size_par:
|
|
if (np.log(x) / np.log(2)).is_integer():
|
|
data_out_gab.append("P")
|
|
qtd_bp = qtd_bp + 1
|
|
else:
|
|
data_out_gab.append("D")
|
|
else:
|
|
data_out_gab.append("D")
|
|
|
|
# Sorts the data to the new output size
|
|
if data_out_gab[-1] == "D":
|
|
data_ord.append(data[cont_data])
|
|
cont_data += 1
|
|
else:
|
|
data_ord.append(None)
|
|
|
|
# Calculates parity
|
|
qtd_bp = 0 # parity bit counter
|
|
for bp in range(1, size_par + 1):
|
|
# Bit counter one for a given parity
|
|
cont_bo = 0
|
|
# counter to control the loop reading
|
|
cont_loop = 0
|
|
for x in data_ord:
|
|
if x is not None:
|
|
try:
|
|
aux = (bin_pos[cont_loop])[-1 * (bp)]
|
|
except IndexError:
|
|
aux = "0"
|
|
if aux == "1" and x == "1":
|
|
cont_bo += 1
|
|
cont_loop += 1
|
|
parity.append(cont_bo % 2)
|
|
|
|
qtd_bp += 1
|
|
|
|
# Mount the message
|
|
cont_bp = 0 # parity bit counter
|
|
for x in range(size_par + len(data)):
|
|
if data_ord[x] is None:
|
|
data_out.append(str(parity[cont_bp]))
|
|
cont_bp += 1
|
|
else:
|
|
data_out.append(data_ord[x])
|
|
|
|
return data_out
|
|
|
|
|
|
def receptor_converter(size_par, data):
|
|
"""
|
|
>>> receptor_converter(4, "1111010010111111")
|
|
(['1', '0', '1', '0', '1', '0', '1', '1', '1', '1', '1', '1'], True)
|
|
"""
|
|
# data position template + parity
|
|
data_out_gab = []
|
|
# Parity bit counter
|
|
qtd_bp = 0
|
|
# Counter p data bit reading
|
|
cont_data = 0
|
|
# list of parity received
|
|
parity_received = []
|
|
data_output = []
|
|
|
|
for x in range(1, len(data) + 1):
|
|
# Performs a template of bit positions - who should be given,
|
|
# and who should be parity
|
|
if qtd_bp < size_par and (np.log(x) / np.log(2)).is_integer():
|
|
data_out_gab.append("P")
|
|
qtd_bp = qtd_bp + 1
|
|
else:
|
|
data_out_gab.append("D")
|
|
|
|
# Sorts the data to the new output size
|
|
if data_out_gab[-1] == "D":
|
|
data_output.append(data[cont_data])
|
|
else:
|
|
parity_received.append(data[cont_data])
|
|
cont_data += 1
|
|
|
|
# -----------calculates the parity with the data
|
|
data_out = []
|
|
parity = []
|
|
bin_pos = [bin(x)[2:] for x in range(1, size_par + len(data_output) + 1)]
|
|
|
|
# sorted information data for the size of the output data
|
|
data_ord = []
|
|
# Data position feedback + parity
|
|
data_out_gab = []
|
|
# Parity bit counter
|
|
qtd_bp = 0
|
|
# Counter p data bit reading
|
|
cont_data = 0
|
|
|
|
for x in range(1, size_par + len(data_output) + 1):
|
|
# Performs a template position of bits - who should be given,
|
|
# and who should be parity
|
|
if qtd_bp < size_par and (np.log(x) / np.log(2)).is_integer():
|
|
data_out_gab.append("P")
|
|
qtd_bp = qtd_bp + 1
|
|
else:
|
|
data_out_gab.append("D")
|
|
|
|
# Sorts the data to the new output size
|
|
if data_out_gab[-1] == "D":
|
|
data_ord.append(data_output[cont_data])
|
|
cont_data += 1
|
|
else:
|
|
data_ord.append(None)
|
|
|
|
# Calculates parity
|
|
qtd_bp = 0 # parity bit counter
|
|
for bp in range(1, size_par + 1):
|
|
# Bit counter one for a certain parity
|
|
cont_bo = 0
|
|
# Counter to control loop reading
|
|
cont_loop = 0
|
|
for x in data_ord:
|
|
if x is not None:
|
|
try:
|
|
aux = (bin_pos[cont_loop])[-1 * (bp)]
|
|
except IndexError:
|
|
aux = "0"
|
|
if aux == "1" and x == "1":
|
|
cont_bo += 1
|
|
cont_loop += 1
|
|
parity.append(str(cont_bo % 2))
|
|
|
|
qtd_bp += 1
|
|
|
|
# Mount the message
|
|
cont_bp = 0 # Parity bit counter
|
|
for x in range(size_par + len(data_output)):
|
|
if data_ord[x] is None:
|
|
data_out.append(str(parity[cont_bp]))
|
|
cont_bp += 1
|
|
else:
|
|
data_out.append(data_ord[x])
|
|
|
|
ack = parity_received == parity
|
|
return data_output, ack
|
|
|
|
|
|
# ---------------------------------------------------------------------
|
|
"""
|
|
# Example how to use
|
|
|
|
# number of parity bits
|
|
sizePari = 4
|
|
|
|
# location of the bit that will be forced an error
|
|
be = 2
|
|
|
|
# Message/word to be encoded and decoded with hamming
|
|
# text = input("Enter the word to be read: ")
|
|
text = "Message01"
|
|
|
|
# Convert the message to binary
|
|
binaryText = text_to_bits(text)
|
|
|
|
# Prints the binary of the string
|
|
print("Text input in binary is '" + binaryText + "'")
|
|
|
|
# total transmitted bits
|
|
totalBits = len(binaryText) + sizePari
|
|
print("Size of data is " + str(totalBits))
|
|
|
|
print("\n --Message exchange--")
|
|
print("Data to send ------------> " + binaryText)
|
|
dataOut = emitterConverter(sizePari, binaryText)
|
|
print("Data converted ----------> " + "".join(dataOut))
|
|
dataReceiv, ack = receptorConverter(sizePari, dataOut)
|
|
print(
|
|
"Data receive ------------> "
|
|
+ "".join(dataReceiv)
|
|
+ "\t\t -- Data integrity: "
|
|
+ str(ack)
|
|
)
|
|
|
|
|
|
print("\n --Force error--")
|
|
print("Data to send ------------> " + binaryText)
|
|
dataOut = emitterConverter(sizePari, binaryText)
|
|
print("Data converted ----------> " + "".join(dataOut))
|
|
|
|
# forces error
|
|
dataOut[-be] = "1" * (dataOut[-be] == "0") + "0" * (dataOut[-be] == "1")
|
|
print("Data after transmission -> " + "".join(dataOut))
|
|
dataReceiv, ack = receptorConverter(sizePari, dataOut)
|
|
print(
|
|
"Data receive ------------> "
|
|
+ "".join(dataReceiv)
|
|
+ "\t\t -- Data integrity: "
|
|
+ str(ack)
|
|
)
|
|
"""
|