mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 21:41:08 +00:00
d5806258d4
* add median of two sorted array * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix syntax * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix syntax * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * improve code * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add documentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
62 lines
1.5 KiB
Python
62 lines
1.5 KiB
Python
"""
|
|
https://www.enjoyalgorithms.com/blog/median-of-two-sorted-arrays
|
|
"""
|
|
|
|
|
|
def find_median_sorted_arrays(nums1: list[int], nums2: list[int]) -> float:
|
|
"""
|
|
Find the median of two arrays.
|
|
|
|
Args:
|
|
nums1: The first array.
|
|
nums2: The second array.
|
|
|
|
Returns:
|
|
The median of the two arrays.
|
|
|
|
Examples:
|
|
>>> find_median_sorted_arrays([1, 3], [2])
|
|
2.0
|
|
|
|
>>> find_median_sorted_arrays([1, 2], [3, 4])
|
|
2.5
|
|
|
|
>>> find_median_sorted_arrays([0, 0], [0, 0])
|
|
0.0
|
|
|
|
>>> find_median_sorted_arrays([], [])
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Both input arrays are empty.
|
|
|
|
>>> find_median_sorted_arrays([], [1])
|
|
1.0
|
|
|
|
>>> find_median_sorted_arrays([-1000], [1000])
|
|
0.0
|
|
|
|
>>> find_median_sorted_arrays([-1.1, -2.2], [-3.3, -4.4])
|
|
-2.75
|
|
"""
|
|
if not nums1 and not nums2:
|
|
raise ValueError("Both input arrays are empty.")
|
|
|
|
# Merge the arrays into a single sorted array.
|
|
merged = sorted(nums1 + nums2)
|
|
total = len(merged)
|
|
|
|
if total % 2 == 1: # If the total number of elements is odd
|
|
return float(merged[total // 2]) # then return the middle element
|
|
|
|
# If the total number of elements is even, calculate
|
|
# the average of the two middle elements as the median.
|
|
middle1 = merged[total // 2 - 1]
|
|
middle2 = merged[total // 2]
|
|
return (float(middle1) + float(middle2)) / 2.0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|