mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 21:41:08 +00:00
3f094fe49d
* Python linting: Add ruff rules for Pandas-vet and Pytest-style * updating DIRECTORY.md --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
121 lines
3.9 KiB
Python
121 lines
3.9 KiB
Python
"""
|
|
Testing here assumes that numpy and linalg is ALWAYS correct!!!!
|
|
|
|
If running from PyCharm you can place the following line in "Additional Arguments" for
|
|
the pytest run configuration
|
|
-vv -m mat_ops -p no:cacheprovider
|
|
"""
|
|
|
|
import logging
|
|
|
|
# standard libraries
|
|
import sys
|
|
|
|
import numpy as np
|
|
import pytest # type: ignore
|
|
|
|
# Custom/local libraries
|
|
from matrix import matrix_operation as matop
|
|
|
|
mat_a = [[12, 10], [3, 9]]
|
|
mat_b = [[3, 4], [7, 4]]
|
|
mat_c = [[3, 0, 2], [2, 0, -2], [0, 1, 1]]
|
|
mat_d = [[3, 0, -2], [2, 0, 2], [0, 1, 1]]
|
|
mat_e = [[3, 0, 2], [2, 0, -2], [0, 1, 1], [2, 0, -2]]
|
|
mat_f = [1]
|
|
mat_h = [2]
|
|
|
|
logger = logging.getLogger()
|
|
logger.level = logging.DEBUG
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
|
|
@pytest.mark.mat_ops()
|
|
@pytest.mark.parametrize(
|
|
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
|
|
)
|
|
def test_addition(mat1, mat2):
|
|
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
|
|
logger.info(f"\n\t{test_addition.__name__} returned integer")
|
|
with pytest.raises(TypeError):
|
|
matop.add(mat1, mat2)
|
|
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
|
|
logger.info(f"\n\t{test_addition.__name__} with same matrix dims")
|
|
act = (np.array(mat1) + np.array(mat2)).tolist()
|
|
theo = matop.add(mat1, mat2)
|
|
assert theo == act
|
|
else:
|
|
logger.info(f"\n\t{test_addition.__name__} with different matrix dims")
|
|
with pytest.raises(ValueError):
|
|
matop.add(mat1, mat2)
|
|
|
|
|
|
@pytest.mark.mat_ops()
|
|
@pytest.mark.parametrize(
|
|
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
|
|
)
|
|
def test_subtraction(mat1, mat2):
|
|
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
|
|
logger.info(f"\n\t{test_subtraction.__name__} returned integer")
|
|
with pytest.raises(TypeError):
|
|
matop.subtract(mat1, mat2)
|
|
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
|
|
logger.info(f"\n\t{test_subtraction.__name__} with same matrix dims")
|
|
act = (np.array(mat1) - np.array(mat2)).tolist()
|
|
theo = matop.subtract(mat1, mat2)
|
|
assert theo == act
|
|
else:
|
|
logger.info(f"\n\t{test_subtraction.__name__} with different matrix dims")
|
|
with pytest.raises(ValueError):
|
|
assert matop.subtract(mat1, mat2)
|
|
|
|
|
|
@pytest.mark.mat_ops()
|
|
@pytest.mark.parametrize(
|
|
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
|
|
)
|
|
def test_multiplication(mat1, mat2):
|
|
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
|
|
logger.info(f"\n\t{test_multiplication.__name__} returned integer")
|
|
with pytest.raises(TypeError):
|
|
matop.add(mat1, mat2)
|
|
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
|
|
logger.info(f"\n\t{test_multiplication.__name__} meets dim requirements")
|
|
act = (np.matmul(mat1, mat2)).tolist()
|
|
theo = matop.multiply(mat1, mat2)
|
|
assert theo == act
|
|
else:
|
|
logger.info(
|
|
f"\n\t{test_multiplication.__name__} does not meet dim requirements"
|
|
)
|
|
with pytest.raises(ValueError):
|
|
assert matop.subtract(mat1, mat2)
|
|
|
|
|
|
@pytest.mark.mat_ops()
|
|
def test_scalar_multiply():
|
|
act = (3.5 * np.array(mat_a)).tolist()
|
|
theo = matop.scalar_multiply(mat_a, 3.5)
|
|
assert theo == act
|
|
|
|
|
|
@pytest.mark.mat_ops()
|
|
def test_identity():
|
|
act = (np.identity(5)).tolist()
|
|
theo = matop.identity(5)
|
|
assert theo == act
|
|
|
|
|
|
@pytest.mark.mat_ops()
|
|
@pytest.mark.parametrize("mat", [mat_a, mat_b, mat_c, mat_d, mat_e, mat_f])
|
|
def test_transpose(mat):
|
|
if (np.array(mat)).shape < (2, 2):
|
|
logger.info(f"\n\t{test_transpose.__name__} returned integer")
|
|
with pytest.raises(TypeError):
|
|
matop.transpose(mat)
|
|
else:
|
|
act = (np.transpose(mat)).tolist()
|
|
theo = matop.transpose(mat, return_map=False)
|
|
assert theo == act
|