mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-24 03:03:43 +00:00
421ace81ed
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.0.285 → v0.0.286](https://github.com/astral-sh/ruff-pre-commit/compare/v0.0.285...v0.0.286) - [github.com/tox-dev/pyproject-fmt: 0.13.1 → 1.1.0](https://github.com/tox-dev/pyproject-fmt/compare/0.13.1...1.1.0) * updating DIRECTORY.md * Fis ruff rules PIE808,PLR1714 --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
137 lines
4.7 KiB
Python
137 lines
4.7 KiB
Python
from __future__ import annotations
|
|
|
|
import math
|
|
|
|
|
|
class SegmentTree:
|
|
def __init__(self, size: int) -> None:
|
|
self.size = size
|
|
# approximate the overall size of segment tree with given value
|
|
self.segment_tree = [0 for i in range(4 * size)]
|
|
# create array to store lazy update
|
|
self.lazy = [0 for i in range(4 * size)]
|
|
self.flag = [0 for i in range(4 * size)] # flag for lazy update
|
|
|
|
def left(self, idx: int) -> int:
|
|
"""
|
|
>>> segment_tree = SegmentTree(15)
|
|
>>> segment_tree.left(1)
|
|
2
|
|
>>> segment_tree.left(2)
|
|
4
|
|
>>> segment_tree.left(12)
|
|
24
|
|
"""
|
|
return idx * 2
|
|
|
|
def right(self, idx: int) -> int:
|
|
"""
|
|
>>> segment_tree = SegmentTree(15)
|
|
>>> segment_tree.right(1)
|
|
3
|
|
>>> segment_tree.right(2)
|
|
5
|
|
>>> segment_tree.right(12)
|
|
25
|
|
"""
|
|
return idx * 2 + 1
|
|
|
|
def build(
|
|
self, idx: int, left_element: int, right_element: int, a: list[int]
|
|
) -> None:
|
|
if left_element == right_element:
|
|
self.segment_tree[idx] = a[left_element - 1]
|
|
else:
|
|
mid = (left_element + right_element) // 2
|
|
self.build(self.left(idx), left_element, mid, a)
|
|
self.build(self.right(idx), mid + 1, right_element, a)
|
|
self.segment_tree[idx] = max(
|
|
self.segment_tree[self.left(idx)], self.segment_tree[self.right(idx)]
|
|
)
|
|
|
|
def update(
|
|
self, idx: int, left_element: int, right_element: int, a: int, b: int, val: int
|
|
) -> bool:
|
|
"""
|
|
update with O(lg n) (Normal segment tree without lazy update will take O(nlg n)
|
|
for each update)
|
|
|
|
update(1, 1, size, a, b, v) for update val v to [a,b]
|
|
"""
|
|
if self.flag[idx] is True:
|
|
self.segment_tree[idx] = self.lazy[idx]
|
|
self.flag[idx] = False
|
|
if left_element != right_element:
|
|
self.lazy[self.left(idx)] = self.lazy[idx]
|
|
self.lazy[self.right(idx)] = self.lazy[idx]
|
|
self.flag[self.left(idx)] = True
|
|
self.flag[self.right(idx)] = True
|
|
|
|
if right_element < a or left_element > b:
|
|
return True
|
|
if left_element >= a and right_element <= b:
|
|
self.segment_tree[idx] = val
|
|
if left_element != right_element:
|
|
self.lazy[self.left(idx)] = val
|
|
self.lazy[self.right(idx)] = val
|
|
self.flag[self.left(idx)] = True
|
|
self.flag[self.right(idx)] = True
|
|
return True
|
|
mid = (left_element + right_element) // 2
|
|
self.update(self.left(idx), left_element, mid, a, b, val)
|
|
self.update(self.right(idx), mid + 1, right_element, a, b, val)
|
|
self.segment_tree[idx] = max(
|
|
self.segment_tree[self.left(idx)], self.segment_tree[self.right(idx)]
|
|
)
|
|
return True
|
|
|
|
# query with O(lg n)
|
|
def query(
|
|
self, idx: int, left_element: int, right_element: int, a: int, b: int
|
|
) -> int | float:
|
|
"""
|
|
query(1, 1, size, a, b) for query max of [a,b]
|
|
>>> A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
|
|
>>> segment_tree = SegmentTree(15)
|
|
>>> segment_tree.build(1, 1, 15, A)
|
|
>>> segment_tree.query(1, 1, 15, 4, 6)
|
|
7
|
|
>>> segment_tree.query(1, 1, 15, 7, 11)
|
|
14
|
|
>>> segment_tree.query(1, 1, 15, 7, 12)
|
|
15
|
|
"""
|
|
if self.flag[idx] is True:
|
|
self.segment_tree[idx] = self.lazy[idx]
|
|
self.flag[idx] = False
|
|
if left_element != right_element:
|
|
self.lazy[self.left(idx)] = self.lazy[idx]
|
|
self.lazy[self.right(idx)] = self.lazy[idx]
|
|
self.flag[self.left(idx)] = True
|
|
self.flag[self.right(idx)] = True
|
|
if right_element < a or left_element > b:
|
|
return -math.inf
|
|
if left_element >= a and right_element <= b:
|
|
return self.segment_tree[idx]
|
|
mid = (left_element + right_element) // 2
|
|
q1 = self.query(self.left(idx), left_element, mid, a, b)
|
|
q2 = self.query(self.right(idx), mid + 1, right_element, a, b)
|
|
return max(q1, q2)
|
|
|
|
def __str__(self) -> str:
|
|
return str([self.query(1, 1, self.size, i, i) for i in range(1, self.size + 1)])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
|
|
size = 15
|
|
segt = SegmentTree(size)
|
|
segt.build(1, 1, size, A)
|
|
print(segt.query(1, 1, size, 4, 6))
|
|
print(segt.query(1, 1, size, 7, 11))
|
|
print(segt.query(1, 1, size, 7, 12))
|
|
segt.update(1, 1, size, 1, 3, 111)
|
|
print(segt.query(1, 1, size, 1, 15))
|
|
segt.update(1, 1, size, 7, 8, 235)
|
|
print(segt)
|