Python/Graphs/bellman_ford.py
Reshad Hasan 9a44eb4479 Organize graph algorithms (#719)
* organized graph algorithms

* all graph algorithms in Graphs/ folder

* all graph algorithms are in one folder

* Rename number theory/factorial_python.py to maths/factorial_python.py
2019-02-25 17:35:24 +08:00

55 lines
1.2 KiB
Python

from __future__ import print_function
def printDist(dist, V):
print("\nVertex Distance")
for i in range(V):
if dist[i] != float('inf') :
print(i,"\t",int(dist[i]),end = "\t")
else:
print(i,"\t","INF",end="\t")
print()
def BellmanFord(graph, V, E, src):
mdist=[float('inf') for i in range(V)]
mdist[src] = 0.0
for i in range(V-1):
for j in range(V):
u = graph[j]["src"]
v = graph[j]["dst"]
w = graph[j]["weight"]
if mdist[u] != float('inf') and mdist[u] + w < mdist[v]:
mdist[v] = mdist[u] + w
for j in range(V):
u = graph[j]["src"]
v = graph[j]["dst"]
w = graph[j]["weight"]
if mdist[u] != float('inf') and mdist[u] + w < mdist[v]:
print("Negative cycle found. Solution not possible.")
return
printDist(mdist, V)
#MAIN
V = int(input("Enter number of vertices: "))
E = int(input("Enter number of edges: "))
graph = [dict() for j in range(E)]
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ",i+1)
src = int(input("Enter source:"))
dst = int(input("Enter destination:"))
weight = float(input("Enter weight:"))
graph[i] = {"src": src,"dst": dst, "weight": weight}
gsrc = int(input("\nEnter shortest path source:"))
BellmanFord(graph, V, E, gsrc)