Python/maths/matrix_exponentiation.py
Scarfinos 8bbe8caa25
Improve test coverage for matrix exponentiation (#12388)
* #9943 : Adding coverage test for basic_graphs.py

* #9943 : Adding coverage test for basic_graphs.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Solve problem of line too long

* Improving coverage for matrix_exponentiation.py

* fix more than one file

* Update matrix_exponentiation.py

* Update matrix_exponentiation.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Maxim Smolskiy <mithridatus@mail.ru>
2024-12-28 01:40:35 +03:00

129 lines
3.2 KiB
Python

"""Matrix Exponentiation"""
import timeit
"""
Matrix Exponentiation is a technique to solve linear recurrences in logarithmic time.
You read more about it here:
https://zobayer.blogspot.com/2010/11/matrix-exponentiation.html
https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/
"""
class Matrix:
def __init__(self, arg):
if isinstance(arg, list): # Initializes a matrix identical to the one provided.
self.t = arg
self.n = len(arg)
else: # Initializes a square matrix of the given size and set values to zero.
self.n = arg
self.t = [[0 for _ in range(self.n)] for _ in range(self.n)]
def __mul__(self, b):
matrix = Matrix(self.n)
for i in range(self.n):
for j in range(self.n):
for k in range(self.n):
matrix.t[i][j] += self.t[i][k] * b.t[k][j]
return matrix
def modular_exponentiation(a, b):
matrix = Matrix([[1, 0], [0, 1]])
while b > 0:
if b & 1:
matrix *= a
a *= a
b >>= 1
return matrix
def fibonacci_with_matrix_exponentiation(n, f1, f2):
"""
Returns the nth number of the Fibonacci sequence that
starts with f1 and f2
Uses the matrix exponentiation
>>> fibonacci_with_matrix_exponentiation(1, 5, 6)
5
>>> fibonacci_with_matrix_exponentiation(2, 10, 11)
11
>>> fibonacci_with_matrix_exponentiation(13, 0, 1)
144
>>> fibonacci_with_matrix_exponentiation(10, 5, 9)
411
>>> fibonacci_with_matrix_exponentiation(9, 2, 3)
89
"""
# Trivial Cases
if n == 1:
return f1
elif n == 2:
return f2
matrix = Matrix([[1, 1], [1, 0]])
matrix = modular_exponentiation(matrix, n - 2)
return f2 * matrix.t[0][0] + f1 * matrix.t[0][1]
def simple_fibonacci(n, f1, f2):
"""
Returns the nth number of the Fibonacci sequence that
starts with f1 and f2
Uses the definition
>>> simple_fibonacci(1, 5, 6)
5
>>> simple_fibonacci(2, 10, 11)
11
>>> simple_fibonacci(13, 0, 1)
144
>>> simple_fibonacci(10, 5, 9)
411
>>> simple_fibonacci(9, 2, 3)
89
"""
# Trivial Cases
if n == 1:
return f1
elif n == 2:
return f2
n -= 2
while n > 0:
f2, f1 = f1 + f2, f2
n -= 1
return f2
def matrix_exponentiation_time():
setup = """
from random import randint
from __main__ import fibonacci_with_matrix_exponentiation
"""
code = "fibonacci_with_matrix_exponentiation(randint(1,70000), 1, 1)"
exec_time = timeit.timeit(setup=setup, stmt=code, number=100)
print("With matrix exponentiation the average execution time is ", exec_time / 100)
return exec_time
def simple_fibonacci_time():
setup = """
from random import randint
from __main__ import simple_fibonacci
"""
code = "simple_fibonacci(randint(1,70000), 1, 1)"
exec_time = timeit.timeit(setup=setup, stmt=code, number=100)
print(
"Without matrix exponentiation the average execution time is ", exec_time / 100
)
return exec_time
def main():
matrix_exponentiation_time()
simple_fibonacci_time()
if __name__ == "__main__":
main()