Python/project_euler/problem_029/sol1.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

51 lines
1.2 KiB
Python

"""
Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
5^2=25, 5^3=125, 5^4=625, 5^5=3125
If they are then placed in numerical order, with any repeats removed, we get
the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by ab
for 2 <= a <= 100 and 2 <= b <= 100?
"""
def solution(n: int = 100) -> int:
"""Returns the number of distinct terms in the sequence generated by a^b
for 2 <= a <= 100 and 2 <= b <= 100.
>>> solution(100)
9183
>>> solution(50)
2184
>>> solution(20)
324
>>> solution(5)
15
>>> solution(2)
1
>>> solution(1)
0
"""
collect_powers = set()
current_pow = 0
n = n + 1 # maximum limit
for a in range(2, n):
for b in range(2, n):
current_pow = a**b # calculates the current power
collect_powers.add(current_pow) # adds the result to the set
return len(collect_powers)
if __name__ == "__main__":
print("Number of terms ", solution(int(str(input()).strip())))