mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
2c75a7b3dd
* Numerous fixes to directed_and_undirected_(weighted)_graph.py * dict.keys() is almost never need in modern Python
494 lines
16 KiB
Python
494 lines
16 KiB
Python
from collections import deque
|
|
from math import floor
|
|
from random import random
|
|
from time import time
|
|
|
|
# the default weight is 1 if not assigned but all the implementation is weighted
|
|
|
|
|
|
class DirectedGraph:
|
|
def __init__(self):
|
|
self.graph = {}
|
|
|
|
# adding vertices and edges
|
|
# adding the weight is optional
|
|
# handles repetition
|
|
def add_pair(self, u, v, w=1):
|
|
if self.graph.get(u):
|
|
if self.graph[u].count([w, v]) == 0:
|
|
self.graph[u].append([w, v])
|
|
else:
|
|
self.graph[u] = [[w, v]]
|
|
if not self.graph.get(v):
|
|
self.graph[v] = []
|
|
|
|
def all_nodes(self):
|
|
return list(self.graph)
|
|
|
|
# handles if the input does not exist
|
|
def remove_pair(self, u, v):
|
|
if self.graph.get(u):
|
|
for _ in self.graph[u]:
|
|
if _[1] == v:
|
|
self.graph[u].remove(_)
|
|
|
|
# if no destination is meant the default value is -1
|
|
def dfs(self, s=-2, d=-1):
|
|
if s == d:
|
|
return []
|
|
stack = []
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph)[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
ss = s
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for node in self.graph[s]:
|
|
if visited.count(node[1]) < 1:
|
|
if node[1] == d:
|
|
visited.append(d)
|
|
return visited
|
|
else:
|
|
stack.append(node[1])
|
|
visited.append(node[1])
|
|
ss = node[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return visited
|
|
|
|
# c is the count of nodes you want and if you leave it or pass -1 to the function
|
|
# the count will be random from 10 to 10000
|
|
def fill_graph_randomly(self, c=-1):
|
|
if c == -1:
|
|
c = floor(random() * 10000) + 10
|
|
for i in range(c):
|
|
# every vertex has max 100 edges
|
|
for _ in range(floor(random() * 102) + 1):
|
|
n = floor(random() * c) + 1
|
|
if n != i:
|
|
self.add_pair(i, n, 1)
|
|
|
|
def bfs(self, s=-2):
|
|
d = deque()
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph)[0]
|
|
d.append(s)
|
|
visited.append(s)
|
|
while d:
|
|
s = d.popleft()
|
|
if len(self.graph[s]) != 0:
|
|
for node in self.graph[s]:
|
|
if visited.count(node[1]) < 1:
|
|
d.append(node[1])
|
|
visited.append(node[1])
|
|
return visited
|
|
|
|
def in_degree(self, u):
|
|
count = 0
|
|
for x in self.graph:
|
|
for y in self.graph[x]:
|
|
if y[1] == u:
|
|
count += 1
|
|
return count
|
|
|
|
def out_degree(self, u):
|
|
return len(self.graph[u])
|
|
|
|
def topological_sort(self, s=-2):
|
|
stack = []
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph)[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
ss = s
|
|
sorted_nodes = []
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for node in self.graph[s]:
|
|
if visited.count(node[1]) < 1:
|
|
stack.append(node[1])
|
|
visited.append(node[1])
|
|
ss = node[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
sorted_nodes.append(stack.pop())
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return sorted_nodes
|
|
|
|
def cycle_nodes(self):
|
|
stack = []
|
|
visited = []
|
|
s = list(self.graph)[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
parent = -2
|
|
indirect_parents = []
|
|
ss = s
|
|
on_the_way_back = False
|
|
anticipating_nodes = set()
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for node in self.graph[s]:
|
|
if (
|
|
visited.count(node[1]) > 0
|
|
and node[1] != parent
|
|
and indirect_parents.count(node[1]) > 0
|
|
and not on_the_way_back
|
|
):
|
|
len_stack = len(stack) - 1
|
|
while True and len_stack >= 0:
|
|
if stack[len_stack] == node[1]:
|
|
anticipating_nodes.add(node[1])
|
|
break
|
|
else:
|
|
anticipating_nodes.add(stack[len_stack])
|
|
len_stack -= 1
|
|
if visited.count(node[1]) < 1:
|
|
stack.append(node[1])
|
|
visited.append(node[1])
|
|
ss = node[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
on_the_way_back = True
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
on_the_way_back = False
|
|
indirect_parents.append(parent)
|
|
parent = s
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return list(anticipating_nodes)
|
|
|
|
def has_cycle(self):
|
|
stack = []
|
|
visited = []
|
|
s = list(self.graph)[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
parent = -2
|
|
indirect_parents = []
|
|
ss = s
|
|
on_the_way_back = False
|
|
anticipating_nodes = set()
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for node in self.graph[s]:
|
|
if (
|
|
visited.count(node[1]) > 0
|
|
and node[1] != parent
|
|
and indirect_parents.count(node[1]) > 0
|
|
and not on_the_way_back
|
|
):
|
|
len_stack_minus_one = len(stack) - 1
|
|
while True and len_stack_minus_one >= 0:
|
|
if stack[len_stack_minus_one] == node[1]:
|
|
anticipating_nodes.add(node[1])
|
|
break
|
|
else:
|
|
return True
|
|
anticipating_nodes.add(stack[len_stack_minus_one])
|
|
len_stack_minus_one -= 1
|
|
if visited.count(node[1]) < 1:
|
|
stack.append(node[1])
|
|
visited.append(node[1])
|
|
ss = node[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
on_the_way_back = True
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
on_the_way_back = False
|
|
indirect_parents.append(parent)
|
|
parent = s
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return False
|
|
|
|
def dfs_time(self, s=-2, e=-1):
|
|
begin = time()
|
|
self.dfs(s, e)
|
|
end = time()
|
|
return end - begin
|
|
|
|
def bfs_time(self, s=-2):
|
|
begin = time()
|
|
self.bfs(s)
|
|
end = time()
|
|
return end - begin
|
|
|
|
|
|
class Graph:
|
|
def __init__(self):
|
|
self.graph = {}
|
|
|
|
# adding vertices and edges
|
|
# adding the weight is optional
|
|
# handles repetition
|
|
def add_pair(self, u, v, w=1):
|
|
# check if the u exists
|
|
if self.graph.get(u):
|
|
# if there already is a edge
|
|
if self.graph[u].count([w, v]) == 0:
|
|
self.graph[u].append([w, v])
|
|
else:
|
|
# if u does not exist
|
|
self.graph[u] = [[w, v]]
|
|
# add the other way
|
|
if self.graph.get(v):
|
|
# if there already is a edge
|
|
if self.graph[v].count([w, u]) == 0:
|
|
self.graph[v].append([w, u])
|
|
else:
|
|
# if u does not exist
|
|
self.graph[v] = [[w, u]]
|
|
|
|
# handles if the input does not exist
|
|
def remove_pair(self, u, v):
|
|
if self.graph.get(u):
|
|
for _ in self.graph[u]:
|
|
if _[1] == v:
|
|
self.graph[u].remove(_)
|
|
# the other way round
|
|
if self.graph.get(v):
|
|
for _ in self.graph[v]:
|
|
if _[1] == u:
|
|
self.graph[v].remove(_)
|
|
|
|
# if no destination is meant the default value is -1
|
|
def dfs(self, s=-2, d=-1):
|
|
if s == d:
|
|
return []
|
|
stack = []
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph)[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
ss = s
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for node in self.graph[s]:
|
|
if visited.count(node[1]) < 1:
|
|
if node[1] == d:
|
|
visited.append(d)
|
|
return visited
|
|
else:
|
|
stack.append(node[1])
|
|
visited.append(node[1])
|
|
ss = node[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return visited
|
|
|
|
# c is the count of nodes you want and if you leave it or pass -1 to the function
|
|
# the count will be random from 10 to 10000
|
|
def fill_graph_randomly(self, c=-1):
|
|
if c == -1:
|
|
c = floor(random() * 10000) + 10
|
|
for i in range(c):
|
|
# every vertex has max 100 edges
|
|
for _ in range(floor(random() * 102) + 1):
|
|
n = floor(random() * c) + 1
|
|
if n != i:
|
|
self.add_pair(i, n, 1)
|
|
|
|
def bfs(self, s=-2):
|
|
d = deque()
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph)[0]
|
|
d.append(s)
|
|
visited.append(s)
|
|
while d:
|
|
s = d.popleft()
|
|
if len(self.graph[s]) != 0:
|
|
for node in self.graph[s]:
|
|
if visited.count(node[1]) < 1:
|
|
d.append(node[1])
|
|
visited.append(node[1])
|
|
return visited
|
|
|
|
def degree(self, u):
|
|
return len(self.graph[u])
|
|
|
|
def cycle_nodes(self):
|
|
stack = []
|
|
visited = []
|
|
s = list(self.graph)[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
parent = -2
|
|
indirect_parents = []
|
|
ss = s
|
|
on_the_way_back = False
|
|
anticipating_nodes = set()
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for node in self.graph[s]:
|
|
if (
|
|
visited.count(node[1]) > 0
|
|
and node[1] != parent
|
|
and indirect_parents.count(node[1]) > 0
|
|
and not on_the_way_back
|
|
):
|
|
len_stack = len(stack) - 1
|
|
while True and len_stack >= 0:
|
|
if stack[len_stack] == node[1]:
|
|
anticipating_nodes.add(node[1])
|
|
break
|
|
else:
|
|
anticipating_nodes.add(stack[len_stack])
|
|
len_stack -= 1
|
|
if visited.count(node[1]) < 1:
|
|
stack.append(node[1])
|
|
visited.append(node[1])
|
|
ss = node[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
on_the_way_back = True
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
on_the_way_back = False
|
|
indirect_parents.append(parent)
|
|
parent = s
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return list(anticipating_nodes)
|
|
|
|
def has_cycle(self):
|
|
stack = []
|
|
visited = []
|
|
s = list(self.graph)[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
parent = -2
|
|
indirect_parents = []
|
|
ss = s
|
|
on_the_way_back = False
|
|
anticipating_nodes = set()
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for node in self.graph[s]:
|
|
if (
|
|
visited.count(node[1]) > 0
|
|
and node[1] != parent
|
|
and indirect_parents.count(node[1]) > 0
|
|
and not on_the_way_back
|
|
):
|
|
len_stack_minus_one = len(stack) - 1
|
|
while True and len_stack_minus_one >= 0:
|
|
if stack[len_stack_minus_one] == node[1]:
|
|
anticipating_nodes.add(node[1])
|
|
break
|
|
else:
|
|
return True
|
|
anticipating_nodes.add(stack[len_stack_minus_one])
|
|
len_stack_minus_one -= 1
|
|
if visited.count(node[1]) < 1:
|
|
stack.append(node[1])
|
|
visited.append(node[1])
|
|
ss = node[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
on_the_way_back = True
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
on_the_way_back = False
|
|
indirect_parents.append(parent)
|
|
parent = s
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return False
|
|
|
|
def all_nodes(self):
|
|
return list(self.graph)
|
|
|
|
def dfs_time(self, s=-2, e=-1):
|
|
begin = time()
|
|
self.dfs(s, e)
|
|
end = time()
|
|
return end - begin
|
|
|
|
def bfs_time(self, s=-2):
|
|
begin = time()
|
|
self.bfs(s)
|
|
end = time()
|
|
return end - begin
|