mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-26 02:48:40 +00:00
252 lines
7.0 KiB
Python
252 lines
7.0 KiB
Python
"""
|
|
Quantum Logic Gates which are implemented mathematically
|
|
and can be used as functions to build complex calculations
|
|
and implement different operations. The input taken is a real value
|
|
and imaginary value of the number and the result is output after computation.
|
|
|
|
References :
|
|
https://en.wikipedia.org/wiki/Quantum_logic_gate
|
|
|
|
Book : Mathematics Of Quantum Computing An Introduction by Wolfgang Scherer
|
|
|
|
Glossary ;
|
|
input_realvalue : the magnitude of the real part of the input complex number.
|
|
input_imaginaryvalue : the magnitude of the imaginary part of the input complex number.
|
|
In cases which require 2 inputs the input is named with a suffix of 1 and 2
|
|
(Eg. input_realvalue_1)
|
|
|
|
alpha : angle of rotation as represented by the block sphere.
|
|
iota : The exponential complex of alpha value.
|
|
nx_value : value of vector in X axis as represented by Hilbert space.
|
|
nx_value : value of vector in Y axis as represented by Hilbert space.
|
|
nx_value : value of vector in Z axis as represented by Hilbert space.
|
|
|
|
* The nx,ny and nz values can also be considered as values of vectors along
|
|
the respective axes on the bloch sphere.
|
|
|
|
Usage :
|
|
>>> paulix_gate(2,3)
|
|
[3 2]
|
|
|
|
>>> pauliy_gate(5,8)
|
|
[0.+8.j 0.-5.j]
|
|
|
|
>>> pauliz_gate(4,1)
|
|
[ 4 -1]
|
|
|
|
>>> identity_gate(7,2)
|
|
9
|
|
|
|
>>> phasefactor_of_input(4,7,45)
|
|
[1.39737084e+20+0.j 2.44539897e+20+0.j]
|
|
|
|
>>> phaseshift_of_input(3,9,30)
|
|
[3.00000000e+00+0.j 9.61782712e+13+0.j]
|
|
|
|
>>> hadamard_gate(5,9)
|
|
[ 9.89949494 -2.82842712]
|
|
[1.+0.j 0.+0.j 0.+0.j 7.+0.j]
|
|
|
|
>>> controlled_not_gate_in_0ket(1,7,4,8)
|
|
[7 1 4 8]
|
|
|
|
>>> controlled_not_gate(6,3,7,5)
|
|
[6 3 5 7]
|
|
|
|
>>> inverted_controlled_not_gate(8,4,9,6)
|
|
[8 6 9 4]
|
|
|
|
>>> controlled_phase_multiplication(3,2,5,1,10)
|
|
[3.00000000e+00+0.j 2.00000000e+00+0.j 1.10132329e+05+0.j
|
|
2.20264658e+04+0.j]
|
|
|
|
>>> swap_gate(5,1,3,7)
|
|
[5 3 1 7]
|
|
|
|
>>> spin_of_input(6,3,45,1,8,3)
|
|
[-16.93201614+10.23066476j -50.61991392 -1.46152354j]
|
|
|
|
"""
|
|
|
|
import cmath
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
|
|
def paulix_gate(input_realvalue, input_imaginaryvalue):
|
|
paulix_matrix = np.array([[0, 1], [1, 0]])
|
|
complex_input = np.array([input_realvalue, input_imaginaryvalue])
|
|
result = np.dot(paulix_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def pauliy_gate(input_realvalue, input_imaginaryvalue):
|
|
i = complex(0, 1)
|
|
pauliy_matrix = [[0, i], [-1 * i, 0]]
|
|
complex_input = np.array([input_realvalue, input_imaginaryvalue])
|
|
result = np.dot(pauliy_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def pauliz_gate(input_realvalue, input_imaginaryvalue):
|
|
pauliz_matrix = np.array([[1, 0], [0, -1]])
|
|
complex_input = np.array([input_realvalue, input_imaginaryvalue])
|
|
result = np.dot(pauliz_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def identity_gate(input_realvalue, input_imaginaryvalue):
|
|
identiy_matrix = np.diag([[1, 0], [0, 1]])
|
|
complex_input = np.array([input_realvalue, input_imaginaryvalue])
|
|
result = np.dot(identiy_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def phasefactor_of_input(input_realvalue, input_imaginaryvalue, alpha):
|
|
iota = cmath.exp(alpha)
|
|
phasefactor = [[iota, 0], [0, iota]]
|
|
complex_input = np.array([input_realvalue, input_imaginaryvalue])
|
|
result = np.dot(phasefactor, complex_input)
|
|
return result
|
|
|
|
|
|
def phaseshift_of_input(input_realvalue, input_imaginaryvalue, alpha):
|
|
iota = cmath.exp(alpha)
|
|
phase = [[1, 0], [0, iota]]
|
|
complex_input = np.array([input_realvalue, input_imaginaryvalue])
|
|
result = np.dot(phase, complex_input)
|
|
return result
|
|
|
|
|
|
def hadamard_gate(input_realvalue, input_imaginaryvalue):
|
|
root_of_2 = 1.0 / math.sqrt(2)
|
|
hadamard_gate_matrix = np.array(
|
|
[[root_of_2, root_of_2], [root_of_2, -1 * root_of_2]]
|
|
)
|
|
complex_input = np.array([input_realvalue, input_imaginaryvalue])
|
|
result = np.dot(hadamard_gate_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def controlled_not_gate_in_0ket(
|
|
input_realvalue_1, input_imaginaryvalue_1, input_realvalue_2, input_imaginaryvalue_2
|
|
):
|
|
controlled_not_gate_0ket_matrix = np.array(
|
|
[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
|
|
)
|
|
complex_input = np.array(
|
|
[
|
|
input_realvalue_1,
|
|
input_imaginaryvalue_1,
|
|
input_realvalue_2,
|
|
input_imaginaryvalue_2,
|
|
]
|
|
)
|
|
print(complex_input)
|
|
result = np.dot(controlled_not_gate_0ket_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def controlled_not_gate(
|
|
input_realvalue_1, input_imaginaryvalue_1, input_realvalue_2, input_imaginaryvalue_2
|
|
):
|
|
controlled_not_gate_matrix = np.array(
|
|
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]
|
|
)
|
|
complex_input = np.array(
|
|
[
|
|
input_realvalue_1,
|
|
input_imaginaryvalue_1,
|
|
input_realvalue_2,
|
|
input_imaginaryvalue_2,
|
|
]
|
|
)
|
|
result = np.dot(controlled_not_gate_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def inverted_controlled_not_gate(
|
|
input_realvalue_1, input_imaginaryvalue_1, input_realvalue_2, input_imaginaryvalue_2
|
|
):
|
|
inverted_controlled_not_gate_matrix = np.array(
|
|
[[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]
|
|
)
|
|
complex_input = np.array(
|
|
[
|
|
input_realvalue_1,
|
|
input_imaginaryvalue_1,
|
|
input_realvalue_2,
|
|
input_imaginaryvalue_2,
|
|
]
|
|
)
|
|
result = np.dot(inverted_controlled_not_gate_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def controlled_phase_multiplication(
|
|
input_realvalue_1,
|
|
input_imaginaryvalue_1,
|
|
input_realvalue_2,
|
|
input_imaginaryvalue_2,
|
|
alpha,
|
|
):
|
|
iota = cmath.exp(alpha)
|
|
controlled_phase_multiplication_matrix = np.array(
|
|
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, iota, 0], [0, 0, 0, iota]]
|
|
)
|
|
complex_input = np.array(
|
|
[
|
|
input_realvalue_1,
|
|
input_imaginaryvalue_1,
|
|
input_realvalue_2,
|
|
input_imaginaryvalue_2,
|
|
]
|
|
)
|
|
result = np.dot(controlled_phase_multiplication_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def swap_gate(
|
|
input_realvalue_1, input_imaginaryvalue_1, input_realvalue_2, input_imaginaryvalue_2
|
|
):
|
|
swap_gate_matrix = np.array(
|
|
[[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
|
|
)
|
|
complex_input = np.array(
|
|
[
|
|
input_realvalue_1,
|
|
input_imaginaryvalue_1,
|
|
input_realvalue_2,
|
|
input_imaginaryvalue_2,
|
|
]
|
|
)
|
|
result = np.dot(swap_gate_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
def spin_of_input(
|
|
input_realvalue, input_imaginaryvalue, alpha_value, nx_value, ny_value, nz_value
|
|
):
|
|
i = complex(0, 1)
|
|
spin_matrix = [
|
|
[
|
|
(math.cos(alpha_value / 2.0))
|
|
- (i * math.sin(alpha_value / 2.0) * nz_value),
|
|
(-1 * i * math.sin(alpha_value / 2.0) * (nx_value + i * ny_value)),
|
|
],
|
|
[
|
|
-1 * i * (math.sin(alpha_value / 2.0) * nx_value - i * ny_value),
|
|
math.cos(alpha_value / 2.0) + (i * math.sin(alpha_value / 2.0) * nz_value),
|
|
],
|
|
]
|
|
complex_input = np.array([input_realvalue, input_imaginaryvalue])
|
|
result = np.dot(spin_matrix, complex_input)
|
|
return result
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|