mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
162 lines
5.8 KiB
Python
162 lines
5.8 KiB
Python
import math
|
|
from typing import List, Tuple
|
|
|
|
|
|
def default_matrix_multiplication(a: List, b: List) -> List:
|
|
"""
|
|
Multiplication only for 2x2 matrices
|
|
"""
|
|
if len(a) != 2 or len(a[0]) != 2 or len(b) != 2 or len(b[0]) != 2:
|
|
raise Exception("Matrices are not 2x2")
|
|
new_matrix = [
|
|
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
|
|
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
|
|
]
|
|
return new_matrix
|
|
|
|
|
|
def matrix_addition(matrix_a: List, matrix_b: List):
|
|
return [
|
|
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
|
|
for row in range(len(matrix_a))
|
|
]
|
|
|
|
|
|
def matrix_subtraction(matrix_a: List, matrix_b: List):
|
|
return [
|
|
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
|
|
for row in range(len(matrix_a))
|
|
]
|
|
|
|
|
|
def split_matrix(a: List,) -> Tuple[List, List, List, List]:
|
|
"""
|
|
Given an even length matrix, returns the top_left, top_right, bot_left, bot_right quadrant.
|
|
|
|
>>> split_matrix([[4,3,2,4],[2,3,1,1],[6,5,4,3],[8,4,1,6]])
|
|
([[4, 3], [2, 3]], [[2, 4], [1, 1]], [[6, 5], [8, 4]], [[4, 3], [1, 6]])
|
|
>>> split_matrix([[4,3,2,4,4,3,2,4],[2,3,1,1,2,3,1,1],[6,5,4,3,6,5,4,3],[8,4,1,6,8,4,1,6],[4,3,2,4,4,3,2,4],[2,3,1,1,2,3,1,1],[6,5,4,3,6,5,4,3],[8,4,1,6,8,4,1,6]])
|
|
([[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]])
|
|
"""
|
|
if len(a) % 2 != 0 or len(a[0]) % 2 != 0:
|
|
raise Exception("Odd matrices are not supported!")
|
|
|
|
matrix_length = len(a)
|
|
mid = matrix_length // 2
|
|
|
|
top_right = [[a[i][j] for j in range(mid, matrix_length)] for i in range(mid)]
|
|
bot_right = [
|
|
[a[i][j] for j in range(mid, matrix_length)] for i in range(mid, matrix_length)
|
|
]
|
|
|
|
top_left = [[a[i][j] for j in range(mid)] for i in range(mid)]
|
|
bot_left = [[a[i][j] for j in range(mid)] for i in range(mid, matrix_length)]
|
|
|
|
return top_left, top_right, bot_left, bot_right
|
|
|
|
|
|
def matrix_dimensions(matrix: List) -> Tuple[int, int]:
|
|
return len(matrix), len(matrix[0])
|
|
|
|
|
|
def print_matrix(matrix: List) -> None:
|
|
for i in range(len(matrix)):
|
|
print(matrix[i])
|
|
|
|
|
|
def actual_strassen(matrix_a: List, matrix_b: List) -> List:
|
|
"""
|
|
Recursive function to calculate the product of two matrices, using the Strassen Algorithm.
|
|
It only supports even length matrices.
|
|
"""
|
|
if matrix_dimensions(matrix_a) == (2, 2):
|
|
return default_matrix_multiplication(matrix_a, matrix_b)
|
|
|
|
a, b, c, d = split_matrix(matrix_a)
|
|
e, f, g, h = split_matrix(matrix_b)
|
|
|
|
t1 = actual_strassen(a, matrix_subtraction(f, h))
|
|
t2 = actual_strassen(matrix_addition(a, b), h)
|
|
t3 = actual_strassen(matrix_addition(c, d), e)
|
|
t4 = actual_strassen(d, matrix_subtraction(g, e))
|
|
t5 = actual_strassen(matrix_addition(a, d), matrix_addition(e, h))
|
|
t6 = actual_strassen(matrix_subtraction(b, d), matrix_addition(g, h))
|
|
t7 = actual_strassen(matrix_subtraction(a, c), matrix_addition(e, f))
|
|
|
|
top_left = matrix_addition(matrix_subtraction(matrix_addition(t5, t4), t2), t6)
|
|
top_right = matrix_addition(t1, t2)
|
|
bot_left = matrix_addition(t3, t4)
|
|
bot_right = matrix_subtraction(matrix_subtraction(matrix_addition(t1, t5), t3), t7)
|
|
|
|
# construct the new matrix from our 4 quadrants
|
|
new_matrix = []
|
|
for i in range(len(top_right)):
|
|
new_matrix.append(top_left[i] + top_right[i])
|
|
for i in range(len(bot_right)):
|
|
new_matrix.append(bot_left[i] + bot_right[i])
|
|
return new_matrix
|
|
|
|
|
|
def strassen(matrix1: List, matrix2: List) -> List:
|
|
"""
|
|
>>> strassen([[2,1,3],[3,4,6],[1,4,2],[7,6,7]], [[4,2,3,4],[2,1,1,1],[8,6,4,2]])
|
|
[[34, 23, 19, 15], [68, 46, 37, 28], [28, 18, 15, 12], [96, 62, 55, 48]]
|
|
>>> strassen([[3,7,5,6,9],[1,5,3,7,8],[1,4,4,5,7]], [[2,4],[5,2],[1,7],[5,5],[7,8]])
|
|
[[139, 163], [121, 134], [100, 121]]
|
|
"""
|
|
if matrix_dimensions(matrix1)[1] != matrix_dimensions(matrix2)[0]:
|
|
raise Exception(
|
|
f"Unable to multiply these matrices, please check the dimensions. \nMatrix A:{matrix1} \nMatrix B:{matrix2}"
|
|
)
|
|
dimension1 = matrix_dimensions(matrix1)
|
|
dimension2 = matrix_dimensions(matrix2)
|
|
|
|
if dimension1[0] == dimension1[1] and dimension2[0] == dimension2[1]:
|
|
return matrix1, matrix2
|
|
|
|
maximum = max(max(dimension1), max(dimension2))
|
|
maxim = int(math.pow(2, math.ceil(math.log2(maximum))))
|
|
new_matrix1 = matrix1
|
|
new_matrix2 = matrix2
|
|
|
|
# Adding zeros to the matrices so that the arrays dimensions are the same and also power of 2
|
|
for i in range(0, maxim):
|
|
if i < dimension1[0]:
|
|
for j in range(dimension1[1], maxim):
|
|
new_matrix1[i].append(0)
|
|
else:
|
|
new_matrix1.append([0] * maxim)
|
|
if i < dimension2[0]:
|
|
for j in range(dimension2[1], maxim):
|
|
new_matrix2[i].append(0)
|
|
else:
|
|
new_matrix2.append([0] * maxim)
|
|
|
|
final_matrix = actual_strassen(new_matrix1, new_matrix2)
|
|
|
|
# Removing the additional zeros
|
|
for i in range(0, maxim):
|
|
if i < dimension1[0]:
|
|
for j in range(dimension2[1], maxim):
|
|
final_matrix[i].pop()
|
|
else:
|
|
final_matrix.pop()
|
|
return final_matrix
|
|
|
|
|
|
if __name__ == "__main__":
|
|
matrix1 = [
|
|
[2, 3, 4, 5],
|
|
[6, 4, 3, 1],
|
|
[2, 3, 6, 7],
|
|
[3, 1, 2, 4],
|
|
[2, 3, 4, 5],
|
|
[6, 4, 3, 1],
|
|
[2, 3, 6, 7],
|
|
[3, 1, 2, 4],
|
|
[2, 3, 4, 5],
|
|
[6, 2, 3, 1],
|
|
]
|
|
matrix2 = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
|
|
print(strassen(matrix1, matrix2))
|