mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-30 16:31:08 +00:00
0d61539883
* Add files via upload This is a simple exploratory notebook that heavily expolits pandas and seaborn * Update logistic_regression.py * Update logistic_regression.py * Rename Food wastage analysis from 1961-2013 (FAO).ipynb to other/Food wastage analysis from 1961-2013 (FAO).ipynb * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py
108 lines
2.9 KiB
Python
108 lines
2.9 KiB
Python
#!/usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
## Logistic Regression from scratch
|
|
|
|
# In[62]:
|
|
|
|
# In[63]:
|
|
|
|
# importing all the required libraries
|
|
|
|
''' Implementing logistic regression for classification problem
|
|
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac'''
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
# get_ipython().run_line_magic('matplotlib', 'inline')
|
|
|
|
from sklearn import datasets
|
|
|
|
|
|
# In[67]:
|
|
|
|
# sigmoid function or logistic function is used as a hypothesis function in classification problems
|
|
|
|
def sigmoid_function(z):
|
|
return 1 / (1 + np.exp(-z))
|
|
|
|
|
|
def cost_function(h, y):
|
|
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
|
|
|
|
def log_likelihood(X, Y, weights):
|
|
scores = np.dot(X, weights)
|
|
return np.sum(Y*scores - np.log(1 + np.exp(scores)) )
|
|
|
|
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
|
|
def logistic_reg(
|
|
alpha,
|
|
X,
|
|
y,
|
|
num_steps,
|
|
max_iterations=70000,
|
|
):
|
|
converged = False
|
|
iterations = 0
|
|
theta = np.zeros(X.shape[1])
|
|
|
|
while not converged:
|
|
z = np.dot(X, theta)
|
|
h = sigmoid_function(z)
|
|
gradient = np.dot(X.T, h - y) / y.size
|
|
theta = theta - alpha * gradient
|
|
z = np.dot(X, theta)
|
|
h = sigmoid_function(z)
|
|
J = cost_function(h, y)
|
|
iterations += 1 # update iterations
|
|
weights = np.zeros(X.shape[1])
|
|
for step in range(num_steps):
|
|
scores = np.dot(X, weights)
|
|
predictions = sigmoid_function(scores)
|
|
if step % 10000 == 0:
|
|
print(log_likelihood(X,y,weights)) # Print log-likelihood every so often
|
|
return weights
|
|
|
|
if iterations == max_iterations:
|
|
print ('Maximum iterations exceeded!')
|
|
print ('Minimal cost function J=', J)
|
|
converged = True
|
|
return theta
|
|
|
|
# In[68]:
|
|
|
|
if __name__ == '__main__':
|
|
iris = datasets.load_iris()
|
|
X = iris.data[:, :2]
|
|
y = (iris.target != 0) * 1
|
|
|
|
alpha = 0.1
|
|
theta = logistic_reg(alpha,X,y,max_iterations=70000,num_steps=30000)
|
|
print (theta)
|
|
|
|
|
|
def predict_prob(X):
|
|
return sigmoid_function(np.dot(X, theta)) # predicting the value of probability from the logistic regression algorithm
|
|
|
|
|
|
plt.figure(figsize=(10, 6))
|
|
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0')
|
|
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1')
|
|
(x1_min, x1_max) = (X[:, 0].min(), X[:, 0].max())
|
|
(x2_min, x2_max) = (X[:, 1].min(), X[:, 1].max())
|
|
(xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max),
|
|
np.linspace(x2_min, x2_max))
|
|
grid = np.c_[xx1.ravel(), xx2.ravel()]
|
|
probs = predict_prob(grid).reshape(xx1.shape)
|
|
plt.contour(
|
|
xx1,
|
|
xx2,
|
|
probs,
|
|
[0.5],
|
|
linewidths=1,
|
|
colors='black',
|
|
)
|
|
|
|
plt.legend()
|