mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-30 16:31:08 +00:00
07e991d553
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038) * refactor: Fix naming conventions (#7038) * Update arithmetic_analysis/lu_decomposition.py Co-authored-by: Christian Clauss <cclauss@me.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038) * chore: Fix naming conventions in doctests (#7038) * fix: Temporarily disable project euler problem 104 (#7069) * chore: Fix naming conventions in doctests (#7038) Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
129 lines
4.4 KiB
Python
129 lines
4.4 KiB
Python
import numpy as np
|
|
|
|
|
|
def power_iteration(
|
|
input_matrix: np.ndarray,
|
|
vector: np.ndarray,
|
|
error_tol: float = 1e-12,
|
|
max_iterations: int = 100,
|
|
) -> tuple[float, np.ndarray]:
|
|
"""
|
|
Power Iteration.
|
|
Find the largest eigenvalue and corresponding eigenvector
|
|
of matrix input_matrix given a random vector in the same space.
|
|
Will work so long as vector has component of largest eigenvector.
|
|
input_matrix must be either real or Hermitian.
|
|
|
|
Input
|
|
input_matrix: input matrix whose largest eigenvalue we will find.
|
|
Numpy array. np.shape(input_matrix) == (N,N).
|
|
vector: random initial vector in same space as matrix.
|
|
Numpy array. np.shape(vector) == (N,) or (N,1)
|
|
|
|
Output
|
|
largest_eigenvalue: largest eigenvalue of the matrix input_matrix.
|
|
Float. Scalar.
|
|
largest_eigenvector: eigenvector corresponding to largest_eigenvalue.
|
|
Numpy array. np.shape(largest_eigenvector) == (N,) or (N,1).
|
|
|
|
>>> import numpy as np
|
|
>>> input_matrix = np.array([
|
|
... [41, 4, 20],
|
|
... [ 4, 26, 30],
|
|
... [20, 30, 50]
|
|
... ])
|
|
>>> vector = np.array([41,4,20])
|
|
>>> power_iteration(input_matrix,vector)
|
|
(79.66086378788381, array([0.44472726, 0.46209842, 0.76725662]))
|
|
"""
|
|
|
|
# Ensure matrix is square.
|
|
assert np.shape(input_matrix)[0] == np.shape(input_matrix)[1]
|
|
# Ensure proper dimensionality.
|
|
assert np.shape(input_matrix)[0] == np.shape(vector)[0]
|
|
# Ensure inputs are either both complex or both real
|
|
assert np.iscomplexobj(input_matrix) == np.iscomplexobj(vector)
|
|
is_complex = np.iscomplexobj(input_matrix)
|
|
if is_complex:
|
|
# Ensure complex input_matrix is Hermitian
|
|
assert np.array_equal(input_matrix, input_matrix.conj().T)
|
|
|
|
# Set convergence to False. Will define convergence when we exceed max_iterations
|
|
# or when we have small changes from one iteration to next.
|
|
|
|
convergence = False
|
|
lambda_previous = 0
|
|
iterations = 0
|
|
error = 1e12
|
|
|
|
while not convergence:
|
|
# Multiple matrix by the vector.
|
|
w = np.dot(input_matrix, vector)
|
|
# Normalize the resulting output vector.
|
|
vector = w / np.linalg.norm(w)
|
|
# Find rayleigh quotient
|
|
# (faster than usual b/c we know vector is normalized already)
|
|
vector_h = vector.conj().T if is_complex else vector.T
|
|
lambda_ = np.dot(vector_h, np.dot(input_matrix, vector))
|
|
|
|
# Check convergence.
|
|
error = np.abs(lambda_ - lambda_previous) / lambda_
|
|
iterations += 1
|
|
|
|
if error <= error_tol or iterations >= max_iterations:
|
|
convergence = True
|
|
|
|
lambda_previous = lambda_
|
|
|
|
if is_complex:
|
|
lambda_ = np.real(lambda_)
|
|
|
|
return lambda_, vector
|
|
|
|
|
|
def test_power_iteration() -> None:
|
|
"""
|
|
>>> test_power_iteration() # self running tests
|
|
"""
|
|
real_input_matrix = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]])
|
|
real_vector = np.array([41, 4, 20])
|
|
complex_input_matrix = real_input_matrix.astype(np.complex128)
|
|
imag_matrix = np.triu(1j * complex_input_matrix, 1)
|
|
complex_input_matrix += imag_matrix
|
|
complex_input_matrix += -1 * imag_matrix.T
|
|
complex_vector = np.array([41, 4, 20]).astype(np.complex128)
|
|
|
|
for problem_type in ["real", "complex"]:
|
|
if problem_type == "real":
|
|
input_matrix = real_input_matrix
|
|
vector = real_vector
|
|
elif problem_type == "complex":
|
|
input_matrix = complex_input_matrix
|
|
vector = complex_vector
|
|
|
|
# Our implementation.
|
|
eigen_value, eigen_vector = power_iteration(input_matrix, vector)
|
|
|
|
# Numpy implementation.
|
|
|
|
# Get eigenvalues and eigenvectors using built-in numpy
|
|
# eigh (eigh used for symmetric or hermetian matrices).
|
|
eigen_values, eigen_vectors = np.linalg.eigh(input_matrix)
|
|
# Last eigenvalue is the maximum one.
|
|
eigen_value_max = eigen_values[-1]
|
|
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
|
|
eigen_vector_max = eigen_vectors[:, -1]
|
|
|
|
# Check our implementation and numpy gives close answers.
|
|
assert np.abs(eigen_value - eigen_value_max) <= 1e-6
|
|
# Take absolute values element wise of each eigenvector.
|
|
# as they are only unique to a minus sign.
|
|
assert np.linalg.norm(np.abs(eigen_vector) - np.abs(eigen_vector_max)) <= 1e-6
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|
|
test_power_iteration()
|