Python/fuzzy_logic/fuzzy_operations.py
Mantas Zimnickas 12f69a86f5 Remove code with side effects from main (#1577)
* Remove code with side effects from main

When running tests withy pytest, some modules execute code in main scope
and open plot or browser windows.

Moves such code under `if __name__ == "__main__"`.

* fixup! Format Python code with psf/black push
2019-11-17 19:38:48 +01:00

103 lines
2.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""README, Author - Jigyasa Gandhi(mailto:jigsgandhi97@gmail.com)
Requirements:
- scikit-fuzzy
- numpy
- matplotlib
Python:
- 3.5
"""
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in python using linspace ()
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
abc1 = [0, 25, 50]
abc2 = [25, 50, 75]
young = fuzz.membership.trimf(X, abc1)
middle_aged = fuzz.membership.trimf(X, abc2)
# Compute the different operations using inbuilt functions.
one = np.ones(75)
zero = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
complement_a = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) (µA(x) * µB(x))]
alg_sum = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
alg_product = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
import matplotlib.pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("Young")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("Middle aged")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("union")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("intersection")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("complement_a")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("difference a/b")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("alg_sum")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("alg_product")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("bdd_sum")
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("bdd_difference")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()