mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
a936e94704
* Enable ruff ARG001 rule * Fix dynamic_programming/combination_sum_iv.py * Fix machine_learning/frequent_pattern_growth.py * Fix other/davis_putnam_logemann_loveland.py * Fix other/password.py * Fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix physics/n_body_simulation.py * Fix project_euler/problem_145/sol1.py * Fix project_euler/problem_174/sol1.py * Fix scheduling/highest_response_ratio_next.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix * Fix * Fix scheduling/job_sequencing_with_deadline.py * Fix scheduling/job_sequencing_with_deadline.py * Fix * Fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
154 lines
4.1 KiB
Python
154 lines
4.1 KiB
Python
"""
|
|
Project Euler problem 145: https://projecteuler.net/problem=145
|
|
Author: Vineet Rao, Maxim Smolskiy
|
|
Problem statement:
|
|
|
|
Some positive integers n have the property that the sum [ n + reverse(n) ]
|
|
consists entirely of odd (decimal) digits.
|
|
For instance, 36 + 63 = 99 and 409 + 904 = 1313.
|
|
We will call such numbers reversible; so 36, 63, 409, and 904 are reversible.
|
|
Leading zeroes are not allowed in either n or reverse(n).
|
|
|
|
There are 120 reversible numbers below one-thousand.
|
|
|
|
How many reversible numbers are there below one-billion (10^9)?
|
|
"""
|
|
|
|
EVEN_DIGITS = [0, 2, 4, 6, 8]
|
|
ODD_DIGITS = [1, 3, 5, 7, 9]
|
|
|
|
|
|
def slow_reversible_numbers(
|
|
remaining_length: int, remainder: int, digits: list[int], length: int
|
|
) -> int:
|
|
"""
|
|
Count the number of reversible numbers of given length.
|
|
Iterate over possible digits considering parity of current sum remainder.
|
|
>>> slow_reversible_numbers(1, 0, [0], 1)
|
|
0
|
|
>>> slow_reversible_numbers(2, 0, [0] * 2, 2)
|
|
20
|
|
>>> slow_reversible_numbers(3, 0, [0] * 3, 3)
|
|
100
|
|
"""
|
|
if remaining_length == 0:
|
|
if digits[0] == 0 or digits[-1] == 0:
|
|
return 0
|
|
|
|
for i in range(length // 2 - 1, -1, -1):
|
|
remainder += digits[i] + digits[length - i - 1]
|
|
|
|
if remainder % 2 == 0:
|
|
return 0
|
|
|
|
remainder //= 10
|
|
|
|
return 1
|
|
|
|
if remaining_length == 1:
|
|
if remainder % 2 == 0:
|
|
return 0
|
|
|
|
result = 0
|
|
for digit in range(10):
|
|
digits[length // 2] = digit
|
|
result += slow_reversible_numbers(
|
|
0, (remainder + 2 * digit) // 10, digits, length
|
|
)
|
|
return result
|
|
|
|
result = 0
|
|
for digit1 in range(10):
|
|
digits[(length + remaining_length) // 2 - 1] = digit1
|
|
|
|
if (remainder + digit1) % 2 == 0:
|
|
other_parity_digits = ODD_DIGITS
|
|
else:
|
|
other_parity_digits = EVEN_DIGITS
|
|
|
|
for digit2 in other_parity_digits:
|
|
digits[(length - remaining_length) // 2] = digit2
|
|
result += slow_reversible_numbers(
|
|
remaining_length - 2,
|
|
(remainder + digit1 + digit2) // 10,
|
|
digits,
|
|
length,
|
|
)
|
|
return result
|
|
|
|
|
|
def slow_solution(max_power: int = 9) -> int:
|
|
"""
|
|
To evaluate the solution, use solution()
|
|
>>> slow_solution(3)
|
|
120
|
|
>>> slow_solution(6)
|
|
18720
|
|
>>> slow_solution(7)
|
|
68720
|
|
"""
|
|
result = 0
|
|
for length in range(1, max_power + 1):
|
|
result += slow_reversible_numbers(length, 0, [0] * length, length)
|
|
return result
|
|
|
|
|
|
def reversible_numbers(
|
|
remaining_length: int, remainder: int, digits: list[int], length: int
|
|
) -> int:
|
|
"""
|
|
Count the number of reversible numbers of given length.
|
|
Iterate over possible digits considering parity of current sum remainder.
|
|
>>> reversible_numbers(1, 0, [0], 1)
|
|
0
|
|
>>> reversible_numbers(2, 0, [0] * 2, 2)
|
|
20
|
|
>>> reversible_numbers(3, 0, [0] * 3, 3)
|
|
100
|
|
"""
|
|
# There exist no reversible 1, 5, 9, 13 (ie. 4k+1) digit numbers
|
|
if (length - 1) % 4 == 0:
|
|
return 0
|
|
|
|
return slow_reversible_numbers(remaining_length, remainder, digits, length)
|
|
|
|
|
|
def solution(max_power: int = 9) -> int:
|
|
"""
|
|
To evaluate the solution, use solution()
|
|
>>> solution(3)
|
|
120
|
|
>>> solution(6)
|
|
18720
|
|
>>> solution(7)
|
|
68720
|
|
"""
|
|
result = 0
|
|
for length in range(1, max_power + 1):
|
|
result += reversible_numbers(length, 0, [0] * length, length)
|
|
return result
|
|
|
|
|
|
def benchmark() -> None:
|
|
"""
|
|
Benchmarks
|
|
"""
|
|
# Running performance benchmarks...
|
|
# slow_solution : 292.9300301000003
|
|
# solution : 54.90970860000016
|
|
|
|
from timeit import timeit
|
|
|
|
print("Running performance benchmarks...")
|
|
|
|
print(f"slow_solution : {timeit('slow_solution()', globals=globals(), number=10)}")
|
|
print(f"solution : {timeit('solution()', globals=globals(), number=10)}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print(f"Solution : {solution()}")
|
|
benchmark()
|
|
|
|
# for i in range(1, 15):
|
|
# print(f"{i}. {reversible_numbers(i, 0, [0]*i, i)}")
|