mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
719c5562d9
- Add default argument values - Add type hints - Change one letter variable names to a more descriptive one - Add doctest for `solution()`
60 lines
1.1 KiB
Python
60 lines
1.1 KiB
Python
"""
|
|
Problem 7: https://projecteuler.net/problem=7
|
|
|
|
By listing the first six prime numbers:
|
|
|
|
2, 3, 5, 7, 11, and 13
|
|
|
|
We can see that the 6th prime is 13. What is the Nth prime number?
|
|
"""
|
|
from math import sqrt
|
|
|
|
|
|
def is_prime(num: int) -> bool:
|
|
"""Determines whether the given number is prime or not"""
|
|
if num == 2:
|
|
return True
|
|
elif num % 2 == 0:
|
|
return False
|
|
else:
|
|
sq = int(sqrt(num)) + 1
|
|
for i in range(3, sq, 2):
|
|
if num % i == 0:
|
|
return False
|
|
return True
|
|
|
|
|
|
def solution(nth: int = 10001) -> int:
|
|
"""Returns the n-th prime number.
|
|
|
|
>>> solution(6)
|
|
13
|
|
>>> solution(1)
|
|
2
|
|
>>> solution(3)
|
|
5
|
|
>>> solution(20)
|
|
71
|
|
>>> solution(50)
|
|
229
|
|
>>> solution(100)
|
|
541
|
|
>>> solution()
|
|
104743
|
|
"""
|
|
count = 0
|
|
number = 1
|
|
while count != nth and number < 3:
|
|
number += 1
|
|
if is_prime(number):
|
|
count += 1
|
|
while count != nth:
|
|
number += 2
|
|
if is_prime(number):
|
|
count += 1
|
|
return number
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print(solution(int(input().strip())))
|