Python/cellular_automata/game_of_life.py
2024-10-15 18:02:13 -05:00

238 lines
6.2 KiB
Python

"""Conway's Game Of Life, Author Anurag Kumar(mailto:anuragkumarak95@gmail.com)
Requirements:
- numpy
- random
- time
- matplotlib
Python:
- 3.5
Usage:
- $python3 game_of_life <canvas_size:int>
Game-Of-Life Rules:
1.
Any live cell with fewer than two live neighbours
dies, as if caused by under-population.
2.
Any live cell with two or three live neighbours lives
on to the next generation.
3.
Any live cell with more than three live neighbours
dies, as if by over-population.
4.
Any dead cell with exactly three live neighbours be-
comes a live cell, as if by reproduction.
"""
import doctest
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
usage_doc = "Usage of script: script_name <size_of_canvas:int>"
choice = [0] * 100 + [1] * 10
random.shuffle(choice)
def create_canvas(size: int) -> list[list[bool]]:
"""
For creating a nested list of boolean values,
based on the size parameter provided
Args:
size: integer
Returns:
A nested list of boolean values
Examples:
>>> create_canvas(1)
[[False]]
>>> create_canvas(2)
[[False, False], [False, False]]
>>> create_canvas(3)
[[False, False, False], [False, False, False], [False, False, False]]
>>> create_canvas(0)
[]
>>> create_canvas(-1)
[]
"""
canvas = [[False for i in range(size)] for j in range(size)]
return canvas
def seed(canvas: list[list[bool]]) -> None:
for i, row in enumerate(canvas):
for j, _ in enumerate(row):
canvas[i][j] = bool(random.getrandbits(1))
def run(canvas: list[list[bool]]) -> list[list[bool]]:
"""
This function runs the rules of game through all points, and changes their
status accordingly.(in the same canvas)
Args:
canvas : canvas of population to run the rules on.
Returns:
canvas of population after one step
Example #1:
>>> canvas=[[False, False, False], [False, False, False], [False, False, False]]
>>> run(canvas)
[[False, False, False], [False, False, False], [False, False, False]]
Example #2:
>>> canvas=[[True, False, False], [True, False, False], [False, False, False]]
>>> run(canvas)
[[False, False, False], [False, False, False], [False, False, False]]
Example #3:
>>> canvas=[[True, True, True], [True, False, False], [False, False, False]]
>>> run(canvas)
[[False, False, False], [False, False, False], [False, False, False]]
Example #4:
>>> canvas=[[True, False, False], [False, False, True], [False, True, False]]
>>> run(canvas)
[[False, False, False], [False, True, False], [False, False, False]]
Example #5:
>>> canvas=[[True, True, True], [True, True, True], [True, True, True]]
>>> run(canvas)
[[False, False, False], [False, False, False], [False, False, True]]
"""
current_canvas = np.array(canvas)
next_gen_canvas = np.array(create_canvas(current_canvas.shape[0]))
for r, row in enumerate(current_canvas):
for c, pt in enumerate(row):
next_gen_canvas[r][c] = __judge_point(
pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2]
)
return next_gen_canvas.tolist()
def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
"""
Update canvas provided
Args:
pt: boolean
neighbours: canvas
Returns:
Updated canvas
Example #1:
Tests pt = True, and alive < 2; expected 'alive' count = 0
>>> pt=True
>>> canvas=[[False, False, False], [False, False, False], [False, False, False]]
>>> __judge_point(pt, canvas)
False
Example #2:
Tests pt = True, and alive < 2; expected 'alive' count = 1
>>> pt=True
>>> canvas=[[True, False, False], [True, False, False], [False, False, False]]
>>> __judge_point(pt, canvas)
False
Example #3:
Tests pt = True, and alive 'in' 2
>>> pt=True
>>> canvas=[[True, True, True], [False, False, False], [False, False, False]]
>>> __judge_point(pt, canvas)
True
Example #4:
Tests pt = True, and alive 'in' 3
>>> pt=True
>>> canvas=[[True, True, True], [True, False, False], [False, False, False]]
>>> __judge_point(pt, canvas)
True
Example #5:
Tests pt = True, and alive > 3; expected 'alive' count = 4
>>> pt=True
>>> canvas=[[True, True, True], [True, False, False], [False, False, True]]
>>> __judge_point(pt, canvas)
False
Example #6:
Tests pt = False, and alive == 3
>>> pt=False
>>> canvas=[[True, False, False], [False, False, True], [False, True, False]]
>>> __judge_point(pt, canvas)
True
Example #7:
Tests pt = False, and alive != 3; expected 'alive' count = 0
>>> pt=False
>>> canvas=[[False, False, False], [False, False, False], [False, False, False]]
>>> __judge_point(pt, canvas)
False
"""
dead = 0
alive = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
state = pt
if pt:
if alive < 2:
state = False
elif alive in {2, 3}:
state = True
elif alive > 3:
state = False
elif alive == 3:
state = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
doctest.testmod()
canvas_size = int(sys.argv[1])
# main working structure of this module.
c = create_canvas(canvas_size)
seed(c)
fig, ax = plt.subplots()
fig.show()
cmap = ListedColormap(["w", "k"])
try:
while True:
c = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass