mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-04 04:46:50 +00:00
317 lines
12 KiB
Python
317 lines
12 KiB
Python
"""
|
|
Name - - LSTM - Long Short-Term Memory Network For Sequence Prediction
|
|
Goal - - Predict sequences of data
|
|
Detail: Total 3 layers neural network
|
|
* Input layer
|
|
* LSTM layer
|
|
* Output layer
|
|
Author: Shashank Tyagi
|
|
Github: LEVII007
|
|
Date: [Current Date]
|
|
"""
|
|
|
|
##### Explanation #####
|
|
# This script implements a Long Short-Term Memory (LSTM) network to learn and predict sequences of characters.
|
|
# It uses numpy for numerical operations and tqdm for progress visualization.
|
|
|
|
# The data is a paragraph about LSTM, converted to lowercase and split into characters.
|
|
# Each character is one-hot encoded for training.
|
|
|
|
# The LSTM class initializes weights and biases for the forget, input, candidate, and output gates.
|
|
# It also initializes weights and biases for the final output layer.
|
|
|
|
# The forward method performs forward propagation through the LSTM network, computing hidden and cell states.
|
|
# It uses sigmoid and tanh activation functions for the gates and cell states.
|
|
|
|
# The backward method performs backpropagation through time, computing gradients for the weights and biases.
|
|
# It updates the weights and biases using the computed gradients and the learning rate.
|
|
|
|
# The train method trains the LSTM network on the input data for a specified number of epochs.
|
|
# It uses one-hot encoded inputs and computes errors using the softmax function.
|
|
|
|
# The test method evaluates the trained LSTM network on the input data, computing accuracy based on predictions.
|
|
|
|
# The script initializes the LSTM network with specified hyperparameters and trains it on the input data.
|
|
# Finally, it tests the trained network and prints the accuracy of the predictions.
|
|
|
|
##### Imports #####
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
|
|
class LSTM:
|
|
def __init__(self, data: str, hidden_dim: int = 25, epochs: int = 1000, lr: float = 0.05) -> None:
|
|
"""
|
|
Initialize the LSTM network with the given data and hyperparameters.
|
|
|
|
:param data: The input data as a string.
|
|
:param hidden_dim: The number of hidden units in the LSTM layer.
|
|
:param epochs: The number of training epochs.
|
|
:param lr: The learning rate.
|
|
"""
|
|
self.data = data.lower()
|
|
self.hidden_dim = hidden_dim
|
|
self.epochs = epochs
|
|
self.lr = lr
|
|
|
|
self.chars = set(self.data)
|
|
self.data_size, self.char_size = len(self.data), len(self.chars)
|
|
|
|
print(f'Data size: {self.data_size}, Char Size: {self.char_size}')
|
|
|
|
self.char_to_idx = {c: i for i, c in enumerate(self.chars)}
|
|
self.idx_to_char = {i: c for i, c in enumerate(self.chars)}
|
|
|
|
self.train_X, self.train_y = self.data[:-1], self.data[1:]
|
|
|
|
self.initialize_weights()
|
|
|
|
##### Helper Functions #####
|
|
def one_hot_encode(self, char: str) -> np.ndarray:
|
|
"""
|
|
One-hot encode a character.
|
|
|
|
:param char: The character to encode.
|
|
:return: A one-hot encoded vector.
|
|
"""
|
|
vector = np.zeros((self.char_size, 1))
|
|
vector[self.char_to_idx[char]] = 1
|
|
return vector
|
|
|
|
def initialize_weights(self) -> None:
|
|
"""
|
|
Initialize the weights and biases for the LSTM network.
|
|
"""
|
|
self.wf = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
|
|
self.bf = np.zeros((self.hidden_dim, 1))
|
|
|
|
self.wi = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
|
|
self.bi = np.zeros((self.hidden_dim, 1))
|
|
|
|
self.wc = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
|
|
self.bc = np.zeros((self.hidden_dim, 1))
|
|
|
|
self.wo = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
|
|
self.bo = np.zeros((self.hidden_dim, 1))
|
|
|
|
self.wy = self.init_weights(self.hidden_dim, self.char_size)
|
|
self.by = np.zeros((self.char_size, 1))
|
|
|
|
def init_weights(self, input_dim: int, output_dim: int) -> np.ndarray:
|
|
"""
|
|
Initialize weights with random values.
|
|
|
|
:param input_dim: The input dimension.
|
|
:param output_dim: The output dimension.
|
|
:return: A matrix of initialized weights.
|
|
"""
|
|
return np.random.uniform(-1, 1, (output_dim, input_dim)) * np.sqrt(6 / (input_dim + output_dim))
|
|
|
|
##### Activation Functions #####
|
|
def sigmoid(self, x: np.ndarray, derivative: bool = False) -> np.ndarray:
|
|
"""
|
|
Sigmoid activation function.
|
|
|
|
:param x: The input array.
|
|
:param derivative: Whether to compute the derivative.
|
|
:return: The sigmoid activation or its derivative.
|
|
"""
|
|
if derivative:
|
|
return x * (1 - x)
|
|
return 1 / (1 + np.exp(-x))
|
|
|
|
def tanh(self, x: np.ndarray, derivative: bool = False) -> np.ndarray:
|
|
"""
|
|
Tanh activation function.
|
|
|
|
:param x: The input array.
|
|
:param derivative: Whether to compute the derivative.
|
|
:return: The tanh activation or its derivative.
|
|
"""
|
|
if derivative:
|
|
return 1 - x ** 2
|
|
return np.tanh(x)
|
|
|
|
def softmax(self, x: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Softmax activation function.
|
|
|
|
:param x: The input array.
|
|
:return: The softmax activation.
|
|
"""
|
|
exp_x = np.exp(x - np.max(x))
|
|
return exp_x / exp_x.sum(axis=0)
|
|
|
|
##### LSTM Network Methods #####
|
|
def reset(self) -> None:
|
|
"""
|
|
Reset the LSTM network states.
|
|
"""
|
|
self.concat_inputs = {}
|
|
|
|
self.hidden_states = {-1: np.zeros((self.hidden_dim, 1))}
|
|
self.cell_states = {-1: np.zeros((self.hidden_dim, 1))}
|
|
|
|
self.activation_outputs = {}
|
|
self.candidate_gates = {}
|
|
self.output_gates = {}
|
|
self.forget_gates = {}
|
|
self.input_gates = {}
|
|
self.outputs = {}
|
|
|
|
def forward(self, inputs: list) -> list:
|
|
"""
|
|
Perform forward propagation through the LSTM network.
|
|
|
|
:param inputs: The input data as a list of one-hot encoded vectors.
|
|
:return: The outputs of the network.
|
|
"""
|
|
self.reset()
|
|
|
|
outputs = []
|
|
for t in range(len(inputs)):
|
|
self.concat_inputs[t] = np.concatenate((self.hidden_states[t - 1], inputs[t]))
|
|
|
|
self.forget_gates[t] = self.sigmoid(np.dot(self.wf, self.concat_inputs[t]) + self.bf)
|
|
self.input_gates[t] = self.sigmoid(np.dot(self.wi, self.concat_inputs[t]) + self.bi)
|
|
self.candidate_gates[t] = self.tanh(np.dot(self.wc, self.concat_inputs[t]) + self.bc)
|
|
self.output_gates[t] = self.sigmoid(np.dot(self.wo, self.concat_inputs[t]) + self.bo)
|
|
|
|
self.cell_states[t] = self.forget_gates[t] * self.cell_states[t - 1] + self.input_gates[t] * self.candidate_gates[t]
|
|
self.hidden_states[t] = self.output_gates[t] * self.tanh(self.cell_states[t])
|
|
|
|
outputs.append(np.dot(self.wy, self.hidden_states[t]) + self.by)
|
|
|
|
return outputs
|
|
|
|
def backward(self, errors: list, inputs: list) -> None:
|
|
"""
|
|
Perform backpropagation through time to compute gradients and update weights.
|
|
|
|
:param errors: The errors at each time step.
|
|
:param inputs: The input data as a list of one-hot encoded vectors.
|
|
"""
|
|
d_wf, d_bf = 0, 0
|
|
d_wi, d_bi = 0, 0
|
|
d_wc, d_bc = 0, 0
|
|
d_wo, d_bo = 0, 0
|
|
d_wy, d_by = 0, 0
|
|
|
|
dh_next, dc_next = np.zeros_like(self.hidden_states[0]), np.zeros_like(self.cell_states[0])
|
|
for t in reversed(range(len(inputs))):
|
|
error = errors[t]
|
|
|
|
# Final Gate Weights and Biases Errors
|
|
d_wy += np.dot(error, self.hidden_states[t].T)
|
|
d_by += error
|
|
|
|
# Hidden State Error
|
|
d_hs = np.dot(self.wy.T, error) + dh_next
|
|
|
|
# Output Gate Weights and Biases Errors
|
|
d_o = self.tanh(self.cell_states[t]) * d_hs * self.sigmoid(self.output_gates[t], derivative=True)
|
|
d_wo += np.dot(d_o, inputs[t].T)
|
|
d_bo += d_o
|
|
|
|
# Cell State Error
|
|
d_cs = self.tanh(self.tanh(self.cell_states[t]), derivative=True) * self.output_gates[t] * d_hs + dc_next
|
|
|
|
# Forget Gate Weights and Biases Errors
|
|
d_f = d_cs * self.cell_states[t - 1] * self.sigmoid(self.forget_gates[t], derivative=True)
|
|
d_wf += np.dot(d_f, inputs[t].T)
|
|
d_bf += d_f
|
|
|
|
# Input Gate Weights and Biases Errors
|
|
d_i = d_cs * self.candidate_gates[t] * self.sigmoid(self.input_gates[t], derivative=True)
|
|
d_wi += np.dot(d_i, inputs[t].T)
|
|
d_bi += d_i
|
|
|
|
# Candidate Gate Weights and Biases Errors
|
|
d_c = d_cs * self.input_gates[t] * self.tanh(self.candidate_gates[t], derivative=True)
|
|
d_wc += np.dot(d_c, inputs[t].T)
|
|
d_bc += d_c
|
|
|
|
# Concatenated Input Error (Sum of Error at Each Gate!)
|
|
d_z = np.dot(self.wf.T, d_f) + np.dot(self.wi.T, d_i) + np.dot(self.wc.T, d_c) + np.dot(self.wo.T, d_o)
|
|
|
|
# Error of Hidden State and Cell State at Next Time Step
|
|
dh_next = d_z[:self.hidden_dim, :]
|
|
dc_next = self.forget_gates[t] * d_cs
|
|
|
|
for d_ in (d_wf, d_bf, d_wi, d_bi, d_wc, d_bc, d_wo, d_bo, d_wy, d_by):
|
|
np.clip(d_, -1, 1, out=d_)
|
|
|
|
self.wf += d_wf * self.lr
|
|
self.bf += d_bf * self.lr
|
|
|
|
self.wi += d_wi * self.lr
|
|
self.bi += d_bi * self.lr
|
|
|
|
self.wc += d_wc * self.lr
|
|
self.bc += d_bc * self.lr
|
|
|
|
self.wo += d_wo * self.lr
|
|
self.bo += d_bo * self.lr
|
|
|
|
self.wy += d_wy * self.lr
|
|
self.by += d_by * self.lr
|
|
|
|
def train(self) -> None:
|
|
"""
|
|
Train the LSTM network on the input data.
|
|
"""
|
|
inputs = [self.one_hot_encode(char) for char in self.train_X]
|
|
|
|
for _ in tqdm(range(self.epochs)):
|
|
predictions = self.forward(inputs)
|
|
|
|
errors = []
|
|
for t in range(len(predictions)):
|
|
errors.append(-self.softmax(predictions[t]))
|
|
errors[-1][self.char_to_idx[self.train_y[t]]] += 1
|
|
|
|
self.backward(errors, self.concat_inputs)
|
|
|
|
def test(self) -> None:
|
|
"""
|
|
Test the trained LSTM network on the input data and print the accuracy.
|
|
"""
|
|
accuracy = 0
|
|
probabilities = self.forward([self.one_hot_encode(char) for char in self.train_X])
|
|
|
|
output = ''
|
|
for t in range(len(self.train_y)):
|
|
prediction = self.idx_to_char[np.random.choice(range(self.char_size), p=self.softmax(probabilities[t].reshape(-1)))]
|
|
|
|
output += prediction
|
|
|
|
if prediction == self.train_y[t]:
|
|
accuracy += 1
|
|
|
|
print(f'Ground Truth:\n{self.train_y}\n')
|
|
print(f'Predictions:\n{output}\n')
|
|
|
|
print(f'Accuracy: {round(accuracy * 100 / len(self.train_X), 2)}%')
|
|
|
|
##### Data #####
|
|
data = """Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN) capable of learning order dependence in sequence prediction problems. This behavior is required in complex problem domains like machine translation, speech recognition, and more. LSTMs are well-suited to classifying, processing, and making predictions based on time series data, since there can be lags of unknown duration between important events in a time series. LSTMs were introduced by Hochreiter and Schmidhuber in 1997, and were refined and popularized by many people in following work. They work by maintaining a cell state that is updated by gates: the forget gate, the input gate, and the output gate. These gates control the flow of information, allowing the network to remember or forget information as needed."""
|
|
|
|
# Initialize Network
|
|
# lstm = LSTM(data=data, hidden_dim=25, epochs=1000, lr=0.05)
|
|
|
|
##### Training #####
|
|
# lstm.train()
|
|
|
|
##### Testing #####
|
|
# lstm.test()
|
|
|
|
if __name__ == "__main__":
|
|
# Initialize Network
|
|
# lstm = LSTM(data=data, hidden_dim=25, epochs=1000, lr=0.05)
|
|
|
|
##### Training #####
|
|
# lstm.train()
|
|
|
|
##### Testing #####
|
|
# lstm.test()
|
|
|
|
# testing can be done by uncommenting the above lines of code. |