Python/machine_learning/random_forest_regressor.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

41 lines
1.2 KiB
Python

# Random Forest Regressor Example
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
def main():
"""
Random Forest Regressor Example using sklearn function.
Boston house price dataset is used to demonstrate the algorithm.
"""
# Load Boston house price dataset
boston = load_boston()
print(boston.keys())
# Split dataset into train and test data
x = boston["data"] # features
y = boston["target"]
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.3, random_state=1
)
# Random Forest Regressor
rand_for = RandomForestRegressor(random_state=42, n_estimators=300)
rand_for.fit(x_train, y_train)
# Predict target for test data
predictions = rand_for.predict(x_test)
predictions = predictions.reshape(len(predictions), 1)
# Error printing
print(f"Mean Absolute Error:\t {mean_absolute_error(y_test, predictions)}")
print(f"Mean Square Error :\t {mean_squared_error(y_test, predictions)}")
if __name__ == "__main__":
main()