Python/maths/trapezoidal_rule.py
jperezr 1909f2272f
adding doctests to maths/trapezoidal_rule.py (#12193)
* adding doctests to trapezoidal_rule.py

* adding algorithm delta-star transformation

* updating DIRECTORY.md

* delete file star_delta_transform.py

* updating DIRECTORY.md

* modified:   ../DIRECTORY.md

---------

Co-authored-by: MRJPEREZR <MRJPEREZR@users.noreply.github.com>
2024-12-28 02:03:24 -08:00

93 lines
2.0 KiB
Python

"""
Numerical integration or quadrature for a smooth function f with known values at x_i
This method is the classical approach of suming 'Equally Spaced Abscissas'
method 1:
"extended trapezoidal rule"
int(f) = dx/2 * (f1 + 2f2 + ... + fn)
"""
def method_1(boundary, steps):
"""
Apply the extended trapezoidal rule to approximate the integral of function f(x)
over the interval defined by 'boundary' with the number of 'steps'.
Args:
boundary (list of floats): A list containing the start and end values [a, b].
steps (int): The number of steps or subintervals.
Returns:
float: Approximation of the integral of f(x) over [a, b].
Examples:
>>> method_1([0, 1], 10)
0.3349999999999999
"""
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
x_i = make_points(a, b, h)
y = 0.0
y += (h / 2.0) * f(a)
for i in x_i:
# print(i)
y += h * f(i)
y += (h / 2.0) * f(b)
return y
def make_points(a, b, h):
"""
Generates points between 'a' and 'b' with step size 'h', excluding the end points.
Args:
a (float): Start value
b (float): End value
h (float): Step size
Examples:
>>> list(make_points(0, 10, 2.5))
[2.5, 5.0, 7.5]
>>> list(make_points(0, 10, 2))
[2, 4, 6, 8]
>>> list(make_points(1, 21, 5))
[6, 11, 16]
>>> list(make_points(1, 5, 2))
[3]
>>> list(make_points(1, 4, 3))
[]
"""
x = a + h
while x <= (b - h):
yield x
x = x + h
def f(x): # enter your function here
"""
Example:
>>> f(2)
4
"""
y = (x - 0) * (x - 0)
return y
def main():
a = 0.0 # Lower bound of integration
b = 1.0 # Upper bound of integration
steps = 10.0 # define number of steps or resolution
boundary = [a, b] # define boundary of integration
y = method_1(boundary, steps)
print(f"y = {y}")
if __name__ == "__main__":
import doctest
doctest.testmod()
main()