mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
47100b992a
* Added code for palindrome partitioning problem under dynamic programming * Updated return type for function * Updated Line 24 according to suggestions * Apply suggestions from code review Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> * Update palindrome_partitioning.py * Update palindrome_partitioning.py * is_palindromic Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com>
40 lines
1.2 KiB
Python
40 lines
1.2 KiB
Python
"""
|
|
Given a string s, partition s such that every substring of the
|
|
partition is a palindrome.
|
|
Find the minimum cuts needed for a palindrome partitioning of s.
|
|
|
|
Time Complexity: O(n^2)
|
|
Space Complexity: O(n^2)
|
|
For other explanations refer to: https://www.youtube.com/watch?v=_H8V5hJUGd0
|
|
"""
|
|
|
|
|
|
def find_minimum_partitions(string: str) -> int:
|
|
"""
|
|
Returns the minimum cuts needed for a palindrome partitioning of string
|
|
|
|
>>> find_minimum_partitions("aab")
|
|
1
|
|
>>> find_minimum_partitions("aaa")
|
|
0
|
|
>>> find_minimum_partitions("ababbbabbababa")
|
|
3
|
|
"""
|
|
length = len(string)
|
|
cut = [0] * length
|
|
is_palindromic = [[False for i in range(length)] for j in range(length)]
|
|
for i, c in enumerate(string):
|
|
mincut = i
|
|
for j in range(i + 1):
|
|
if c == string[j] and (i - j < 2 or is_palindromic[j + 1][i - 1]):
|
|
is_palindromic[j][i] = True
|
|
mincut = min(mincut, 0 if j == 0 else (cut[j - 1] + 1))
|
|
cut[i] = mincut
|
|
return cut[length - 1]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
s = input("Enter the string: ").strip()
|
|
ans = find_minimum_partitions(s)
|
|
print(f"Minimum number of partitions required for the '{s}' is {ans}")
|