Python/graphs/johnson_graph.py
2024-10-28 14:06:39 +11:00

151 lines
5.0 KiB
Python

import heapq
import sys
# First implementation of johnson algorithm
# Steps followed to implement this algorithm is given in the below link:
# https://brilliant.org/wiki/johnsons-algorithm/
class JohnsonGraph:
def __init__(self) -> None:
"""
Initializes an empty graph with no edges.
"""
self.edges: list[tuple[str, str, int]] = []
self.graph: dict[str, list[tuple[str, int]]] = {}
# add vertices for a graph
def add_vertices(self, vertex: str) -> None:
"""
Adds a vertex `u` to the graph with an empty adjacency list.
"""
self.graph[vertex] = []
# assign weights for each edges formed of the directed graph
def add_edge(self, vertex_a: str, vertex_b: str, weight: int) -> None:
"""
Adds a directed edge from vertex `u` to vertex `v` with weight `w`.
"""
self.edges.append((vertex_a, vertex_b, weight))
self.graph[vertex_a].append((vertex_b, weight))
# perform a dijkstra algorithm on a directed graph
def dijkstra(self, start: str) -> dict:
"""
Computes the shortest path from vertex `s`
to all other vertices using Dijkstra's algorithm.
"""
distances = {vertex: sys.maxsize - 1 for vertex in self.graph}
pq = [(0, start)]
distances[start] = 0
while pq:
weight, vertex = heapq.heappop(pq)
if weight > distances[vertex]:
continue
for node, node_weight in self.graph[vertex]:
if distances[vertex] + node_weight < distances[node]:
distances[node] = distances[vertex] + node_weight
heapq.heappush(pq, (distances[node], node))
return distances
# carry out the bellman ford algorithm for a node and estimate its distance vector
def bellman_ford(self, start: str) -> dict:
"""
Computes the shortest path from vertex `s`
to all other vertices using the Bellman-Ford algorithm.
"""
distances = {vertex: sys.maxsize - 1 for vertex in self.graph}
distances[start] = 0
for vertex_a in self.graph:
for vertex_a, vertex_b, weight in self.edges:
if (
distances[vertex_a] != sys.maxsize - 1
and distances[vertex_a] + weight < distances[vertex_b]
):
distances[vertex_b] = distances[vertex_a] + weight
return distances
# perform the johnson algorithm to handle the negative weights that
# could not be handled by either the dijkstra
# or the bellman ford algorithm efficiently
def johnson_algo(self) -> list[dict]:
"""
Computes the shortest paths between
all pairs of vertices using Johnson's algorithm.
"""
self.add_vertices("#")
for vertex in self.graph:
if vertex != "#":
self.add_edge("#", vertex, 0)
hash_path = self.bellman_ford("#")
for i in range(len(self.edges)):
vertex_a, vertex_b, weight = self.edges[i]
self.edges[i] = (
vertex_a,
vertex_b,
weight + hash_path[vertex_a] - hash_path[vertex_b],
)
self.edges[i] = (vertex_a,
vertex_b,
weight + hash_path[vertex_a] - hash_path[vertex_b])
self.graph.pop("#")
self.edges = [
(vertex1, vertex2, node_weight)
for vertex1, vertex2, node_weight in self.edges
if vertex1 != "#"
]
filtered_edges = []
for vertex1, vertex2, node_weight in self.edges:
if vertex1 != "#":
filtered_edges.append((vertex1, vertex2, node_weight))
self.edges = filtered_edges
for vertex in self.graph:
self.graph[vertex] = [
(vertex2, node_weight)
for vertex1, vertex2, node_weight in self.edges
if vertex1 == vertex
]
filtered_neighbors = []
for vertex1, vertex2, node_weight in self.edges:
if vertex1 == vertex:
filtered_neighbors.append((vertex2, node_weight))
self.graph[vertex] = filtered_neighbors
distances = []
for vertex1 in self.graph:
new_dist = self.dijkstra(vertex1)
for vertex2 in self.graph:
if new_dist[vertex2] < sys.maxsize - 1:
new_dist[vertex2] += hash_path[vertex1] - hash_path[vertex2]
distances.append(new_dist)
return distances
g = JohnsonGraph()
# this a complete connected graph
g.add_vertices("A")
g.add_vertices("B")
g.add_vertices("C")
g.add_vertices("D")
g.add_vertices("E")
g.add_edge("A", "B", 1)
g.add_edge("A", "C", 3)
g.add_edge("B", "D", 4)
g.add_edge("D", "E", 2)
g.add_edge("E", "C", -2)
optimal_paths = g.johnson_algo()
print("Print all optimal paths of a graph using Johnson Algorithm")
for i, row in enumerate(optimal_paths):
print(f"{i}: {row}")