Python/searches/interpolation_search.py
Ihor Pryyma 146800307c
Add doctests to interpolation_search.py (#11492)
* Add doctests to interpolation_search.py

* update docs

* update tests

* update tests 2

* clean code
2024-07-25 17:56:31 +02:00

138 lines
4.2 KiB
Python

"""
This is pure Python implementation of interpolation search algorithm
"""
def interpolation_search(sorted_collection: list[int], item: int) -> int | None:
"""
Searches for an item in a sorted collection by interpolation search algorithm.
Args:
sorted_collection: sorted list of integers
item: item value to search
Returns:
int: The index of the found item, or None if the item is not found.
Examples:
>>> interpolation_search([1, 2, 3, 4, 5], 2)
1
>>> interpolation_search([1, 2, 3, 4, 5], 4)
3
>>> interpolation_search([1, 2, 3, 4, 5], 6) is None
True
>>> interpolation_search([], 1) is None
True
>>> interpolation_search([100], 100)
0
>>> interpolation_search([1, 2, 3, 4, 5], 0) is None
True
>>> interpolation_search([1, 2, 3, 4, 5], 7) is None
True
>>> interpolation_search([1, 2, 3, 4, 5], 2)
1
>>> interpolation_search([1, 2, 3, 4, 5], 0) is None
True
>>> interpolation_search([1, 2, 3, 4, 5], 7) is None
True
>>> interpolation_search([1, 2, 3, 4, 5], 2)
1
>>> interpolation_search([5, 5, 5, 5, 5], 3) is None
True
"""
left = 0
right = len(sorted_collection) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
return None
point = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(sorted_collection):
return None
current_item = sorted_collection[point]
if current_item == item:
return point
if point < left:
right = left
left = point
elif point > right:
left = right
right = point
elif item < current_item:
right = point - 1
else:
left = point + 1
return None
def interpolation_search_by_recursion(
sorted_collection: list[int], item: int, left: int = 0, right: int | None = None
) -> int | None:
"""Pure implementation of interpolation search algorithm in Python by recursion
Be careful collection must be ascending sorted, otherwise result will be
unpredictable
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
Args:
sorted_collection: some sorted collection with comparable items
item: item value to search
left: left index in collection
right: right index in collection
Returns:
index of item in collection or None if item is not present
Examples:
>>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 0)
0
>>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 15)
4
>>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 5)
1
>>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 100) is None
True
>>> interpolation_search_by_recursion([5, 5, 5, 5, 5], 3) is None
True
"""
if right is None:
right = len(sorted_collection) - 1
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
return None
point = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(sorted_collection):
return None
if sorted_collection[point] == item:
return point
if point < left:
return interpolation_search_by_recursion(sorted_collection, item, point, left)
if point > right:
return interpolation_search_by_recursion(sorted_collection, item, right, left)
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
sorted_collection, item, left, point - 1
)
return interpolation_search_by_recursion(sorted_collection, item, point + 1, right)
if __name__ == "__main__":
import doctest
doctest.testmod()