mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
0a84b8f842
* Adding doctests and changing file name * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update binary_multiplication.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update binary_multiplication.py * Changing comment and changing name function * Changing comment and changing name function * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update binary_multiplication.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update binary_multiplication.py * Update binary_multiplication.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
102 lines
2.2 KiB
Python
102 lines
2.2 KiB
Python
"""
|
|
Binary Multiplication
|
|
This is a method to find a*b in a time complexity of O(log b)
|
|
This is one of the most commonly used methods of finding result of multiplication.
|
|
Also useful in cases where solution to (a*b)%c is required,
|
|
where a,b,c can be numbers over the computers calculation limits.
|
|
Done using iteration, can also be done using recursion
|
|
|
|
Let's say you need to calculate a * b
|
|
RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2
|
|
RULE 2 : IF b is odd, then ---- a * b = a + (a * (b - 1)), where (b - 1) is even.
|
|
Once b is even, repeat the process to get a * b
|
|
Repeat the process until b = 1 or b = 0, because a*1 = a and a*0 = 0
|
|
|
|
As far as the modulo is concerned,
|
|
the fact : (a+b) % c = ((a%c) + (b%c)) % c
|
|
Now apply RULE 1 or 2, whichever is required.
|
|
|
|
@author chinmoy159
|
|
"""
|
|
|
|
|
|
def binary_multiply(a: int, b: int) -> int:
|
|
"""
|
|
Multiply 'a' and 'b' using bitwise multiplication.
|
|
|
|
Parameters:
|
|
a (int): The first number.
|
|
b (int): The second number.
|
|
|
|
Returns:
|
|
int: a * b
|
|
|
|
Examples:
|
|
>>> binary_multiply(2, 3)
|
|
6
|
|
>>> binary_multiply(5, 0)
|
|
0
|
|
>>> binary_multiply(3, 4)
|
|
12
|
|
>>> binary_multiply(10, 5)
|
|
50
|
|
>>> binary_multiply(0, 5)
|
|
0
|
|
>>> binary_multiply(2, 1)
|
|
2
|
|
>>> binary_multiply(1, 10)
|
|
10
|
|
"""
|
|
res = 0
|
|
while b > 0:
|
|
if b & 1:
|
|
res += a
|
|
|
|
a += a
|
|
b >>= 1
|
|
|
|
return res
|
|
|
|
|
|
def binary_mod_multiply(a: int, b: int, modulus: int) -> int:
|
|
"""
|
|
Calculate (a * b) % c using binary multiplication and modular arithmetic.
|
|
|
|
Parameters:
|
|
a (int): The first number.
|
|
b (int): The second number.
|
|
modulus (int): The modulus.
|
|
|
|
Returns:
|
|
int: (a * b) % modulus.
|
|
|
|
Examples:
|
|
>>> binary_mod_multiply(2, 3, 5)
|
|
1
|
|
>>> binary_mod_multiply(5, 0, 7)
|
|
0
|
|
>>> binary_mod_multiply(3, 4, 6)
|
|
0
|
|
>>> binary_mod_multiply(10, 5, 13)
|
|
11
|
|
>>> binary_mod_multiply(2, 1, 5)
|
|
2
|
|
>>> binary_mod_multiply(1, 10, 3)
|
|
1
|
|
"""
|
|
res = 0
|
|
while b > 0:
|
|
if b & 1:
|
|
res = ((res % modulus) + (a % modulus)) % modulus
|
|
|
|
a += a
|
|
b >>= 1
|
|
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|