Python/maths/prime_numbers.py
pre-commit-ci[bot] fc33c50593
[pre-commit.ci] pre-commit autoupdate (#12398)
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.4.10 → v0.5.0](https://github.com/astral-sh/ruff-pre-commit/compare/v0.4.10...v0.5.0)
- [github.com/pre-commit/mirrors-mypy: v1.10.0 → v1.10.1](https://github.com/pre-commit/mirrors-mypy/compare/v1.10.0...v1.10.1)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-11-25 21:46:20 +01:00

110 lines
3.0 KiB
Python

import math
from collections.abc import Generator
def slow_primes(max_n: int) -> Generator[int]:
"""
Return a list of all primes numbers up to max.
>>> list(slow_primes(0))
[]
>>> list(slow_primes(-1))
[]
>>> list(slow_primes(-10))
[]
>>> list(slow_primes(25))
[2, 3, 5, 7, 11, 13, 17, 19, 23]
>>> list(slow_primes(11))
[2, 3, 5, 7, 11]
>>> list(slow_primes(33))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
>>> list(slow_primes(1000))[-1]
997
"""
numbers: Generator = (i for i in range(1, (max_n + 1)))
for i in (n for n in numbers if n > 1):
for j in range(2, i):
if (i % j) == 0:
break
else:
yield i
def primes(max_n: int) -> Generator[int]:
"""
Return a list of all primes numbers up to max.
>>> list(primes(0))
[]
>>> list(primes(-1))
[]
>>> list(primes(-10))
[]
>>> list(primes(25))
[2, 3, 5, 7, 11, 13, 17, 19, 23]
>>> list(primes(11))
[2, 3, 5, 7, 11]
>>> list(primes(33))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
>>> list(primes(1000))[-1]
997
"""
numbers: Generator = (i for i in range(1, (max_n + 1)))
for i in (n for n in numbers if n > 1):
# only need to check for factors up to sqrt(i)
bound = int(math.sqrt(i)) + 1
for j in range(2, bound):
if (i % j) == 0:
break
else:
yield i
def fast_primes(max_n: int) -> Generator[int]:
"""
Return a list of all primes numbers up to max.
>>> list(fast_primes(0))
[]
>>> list(fast_primes(-1))
[]
>>> list(fast_primes(-10))
[]
>>> list(fast_primes(25))
[2, 3, 5, 7, 11, 13, 17, 19, 23]
>>> list(fast_primes(11))
[2, 3, 5, 7, 11]
>>> list(fast_primes(33))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
>>> list(fast_primes(1000))[-1]
997
"""
numbers: Generator = (i for i in range(1, (max_n + 1), 2))
# It's useless to test even numbers as they will not be prime
if max_n > 2:
yield 2 # Because 2 will not be tested, it's necessary to yield it now
for i in (n for n in numbers if n > 1):
bound = int(math.sqrt(i)) + 1
for j in range(3, bound, 2):
# As we removed the even numbers, we don't need them now
if (i % j) == 0:
break
else:
yield i
def benchmark():
"""
Let's benchmark our functions side-by-side...
"""
from timeit import timeit
setup = "from __main__ import slow_primes, primes, fast_primes"
print(timeit("slow_primes(1_000_000_000_000)", setup=setup, number=1_000_000))
print(timeit("primes(1_000_000_000_000)", setup=setup, number=1_000_000))
print(timeit("fast_primes(1_000_000_000_000)", setup=setup, number=1_000_000))
if __name__ == "__main__":
number = int(input("Calculate primes up to:\n>> ").strip())
for ret in primes(number):
print(ret)
benchmark()